--- a/Nominal/Test.thy Tue Mar 16 18:02:08 2010 +0100
+++ b/Nominal/Test.thy Tue Mar 16 18:13:34 2010 +0100
@@ -43,8 +43,8 @@
by (rule eqvts)
lemma supp_fv:
- "supp t = fv_lam t" and
- "supp bp = fv_bp bp \<and> fv_bi bp = {a. infinite {b. \<not>alpha_bi ((a \<rightleftharpoons> b) \<bullet> bp) bp}}"
+ shows "supp t = fv_lam t"
+ and "supp bp = fv_bp bp \<and> fv_bi bp = {a. infinite {b. \<not>alpha_bi ((a \<rightleftharpoons> b) \<bullet> bp) bp}}"
apply(induct t and bp rule: lam_bp_inducts)
apply(simp_all add: lam_bp_fv)
(* VAR case *)
@@ -107,6 +107,8 @@
apply(blast)
done
+thm lam_bp_fv[simplified supp_fv(1)[symmetric] supp_fv(2)[THEN conjunct1, symmetric]]
+
text {* example 2 *}
nominal_datatype trm' =