--- a/Quot/Nominal/Nominal2_Atoms.thy Sat Feb 06 12:58:56 2010 +0100
+++ b/Quot/Nominal/Nominal2_Atoms.thy Sun Feb 07 10:16:21 2010 +0100
@@ -5,7 +5,7 @@
*)
theory Nominal2_Atoms
imports Nominal2_Base
-uses ("atom_decl.ML")
+uses ("nominal_atoms.ML")
begin
section {* Concrete atom types *}
@@ -30,14 +30,13 @@
shows "supp a = {atom a}"
by (simp add: supp_atom [symmetric] supp_def atom_eqvt)
-lemma fresh_at:
+lemma fresh_at_base:
shows "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b"
unfolding fresh_def by (simp add: supp_at_base)
instance at_base < fs
proof qed (simp add: supp_at_base)
-
lemma at_base_infinite [simp]:
shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
proof
@@ -157,20 +156,24 @@
New atom types are defined as subtypes of @{typ atom}.
*}
-lemma exists_eq_sort:
+lemma exists_eq_simple_sort:
shows "\<exists>a. a \<in> {a. sort_of a = s}"
by (rule_tac x="Atom s 0" in exI, simp)
+lemma exists_eq_sort:
+ shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}"
+ by (rule_tac x="Atom (sort_fun x) y" in exI, simp)
+
lemma at_base_class:
- fixes s :: atom_sort
+ fixes sort_fun :: "'b \<Rightarrow>atom_sort"
fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
- assumes type: "type_definition Rep Abs {a. P (sort_of a)}"
+ assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}"
assumes atom_def: "\<And>a. atom a = Rep a"
assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
shows "OFCLASS('a, at_base_class)"
proof
- interpret type_definition Rep Abs "{a. P (sort_of a)}" by (rule type)
- have sort_of_Rep: "\<And>a. P (sort_of (Rep a))" using Rep by simp
+ interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type)
+ have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp
fix a b :: 'a and p p1 p2 :: perm
show "0 \<bullet> a = a"
unfolding permute_def by (simp add: Rep_inverse)
@@ -182,6 +185,31 @@
unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed
+(*
+lemma at_class:
+ fixes s :: atom_sort
+ fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
+ assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}"
+ assumes atom_def: "\<And>a. atom a = Rep a"
+ assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
+ shows "OFCLASS('a, at_class)"
+proof
+ interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type)
+ have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
+ fix a b :: 'a and p p1 p2 :: perm
+ show "0 \<bullet> a = a"
+ unfolding permute_def by (simp add: Rep_inverse)
+ show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
+ unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
+ show "sort_of (atom a) = sort_of (atom b)"
+ unfolding atom_def by (simp add: sort_of_Rep)
+ show "atom a = atom b \<longleftrightarrow> a = b"
+ unfolding atom_def by (simp add: Rep_inject)
+ show "p \<bullet> atom a = atom (p \<bullet> a)"
+ unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
+qed
+*)
+
lemma at_class:
fixes s :: atom_sort
fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
@@ -191,7 +219,7 @@
shows "OFCLASS('a, at_class)"
proof
interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
- have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by simp
+ have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
fix a b :: 'a and p p1 p2 :: perm
show "0 \<bullet> a = a"
unfolding permute_def by (simp add: Rep_inverse)
@@ -215,7 +243,9 @@
text {* at the moment only single-sort concrete atoms are supported *}
-use "atom_decl.ML"
+use "nominal_atoms.ML"
+
+
end