--- a/Quot/Examples/LarryInt.thy Fri Feb 12 15:50:43 2010 +0100
+++ b/Quot/Examples/LarryInt.thy Fri Feb 12 16:04:10 2010 +0100
@@ -16,18 +16,18 @@
instantiation int :: "{zero, one, plus, uminus, minus, times, ord}"
begin
-quotient_definition
- Zero_int_def: "0::int" as "(0::nat, 0::nat)"
+quotient_definition
+ Zero_int_def: "0::int" is "(0::nat, 0::nat)"
quotient_definition
- One_int_def: "1::int" as "(1::nat, 0::nat)"
+ One_int_def: "1::int" is "(1::nat, 0::nat)"
definition
"add_raw \<equiv> \<lambda>(x, y) (u, v). (x + (u::nat), y + (v::nat))"
quotient_definition
"(op +) :: int \<Rightarrow> int \<Rightarrow> int"
-as
+is
"add_raw"
definition
@@ -35,7 +35,7 @@
quotient_definition
"uminus :: int \<Rightarrow> int"
-as
+is
"uminus_raw"
fun
@@ -45,7 +45,7 @@
quotient_definition
"(op *) :: int \<Rightarrow> int \<Rightarrow> int"
-as
+is
"mult_raw"
definition
@@ -53,7 +53,7 @@
quotient_definition
le_int_def: "(op \<le>) :: int \<Rightarrow> int \<Rightarrow> bool"
-as
+is
"le_raw"
definition
@@ -369,7 +369,7 @@
quotient_definition
"nat2::int \<Rightarrow> nat"
-as
+is
"nat_raw"
abbreviation