--- a/Nominal/Nominal2_Base.thy Sat Apr 03 22:31:11 2010 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1062 +0,0 @@
-(* Title: Nominal2_Base
- Authors: Brian Huffman, Christian Urban
-
- Basic definitions and lemma infrastructure for
- Nominal Isabelle.
-*)
-theory Nominal2_Base
-imports Main Infinite_Set
-begin
-
-section {* Atoms and Sorts *}
-
-text {* A simple implementation for atom_sorts is strings. *}
-(* types atom_sort = string *)
-
-text {* To deal with Church-like binding we use trees of
- strings as sorts. *}
-
-datatype atom_sort = Sort "string" "atom_sort list"
-
-datatype atom = Atom atom_sort nat
-
-
-text {* Basic projection function. *}
-
-primrec
- sort_of :: "atom \<Rightarrow> atom_sort"
-where
- "sort_of (Atom s i) = s"
-
-
-text {* There are infinitely many atoms of each sort. *}
-lemma INFM_sort_of_eq:
- shows "INFM a. sort_of a = s"
-proof -
- have "INFM i. sort_of (Atom s i) = s" by simp
- moreover have "inj (Atom s)" by (simp add: inj_on_def)
- ultimately show "INFM a. sort_of a = s" by (rule INFM_inj)
-qed
-
-lemma infinite_sort_of_eq:
- shows "infinite {a. sort_of a = s}"
- using INFM_sort_of_eq unfolding INFM_iff_infinite .
-
-lemma atom_infinite [simp]:
- shows "infinite (UNIV :: atom set)"
- using subset_UNIV infinite_sort_of_eq
- by (rule infinite_super)
-
-lemma obtain_atom:
- fixes X :: "atom set"
- assumes X: "finite X"
- obtains a where "a \<notin> X" "sort_of a = s"
-proof -
- from X have "MOST a. a \<notin> X"
- unfolding MOST_iff_cofinite by simp
- with INFM_sort_of_eq
- have "INFM a. sort_of a = s \<and> a \<notin> X"
- by (rule INFM_conjI)
- then obtain a where "a \<notin> X" "sort_of a = s"
- by (auto elim: INFM_E)
- then show ?thesis ..
-qed
-
-section {* Sort-Respecting Permutations *}
-
-typedef perm =
- "{f. bij f \<and> finite {a. f a \<noteq> a} \<and> (\<forall>a. sort_of (f a) = sort_of a)}"
-proof
- show "id \<in> ?perm" by simp
-qed
-
-lemma permI:
- assumes "bij f" and "MOST x. f x = x" and "\<And>a. sort_of (f a) = sort_of a"
- shows "f \<in> perm"
- using assms unfolding perm_def MOST_iff_cofinite by simp
-
-lemma perm_is_bij: "f \<in> perm \<Longrightarrow> bij f"
- unfolding perm_def by simp
-
-lemma perm_is_finite: "f \<in> perm \<Longrightarrow> finite {a. f a \<noteq> a}"
- unfolding perm_def by simp
-
-lemma perm_is_sort_respecting: "f \<in> perm \<Longrightarrow> sort_of (f a) = sort_of a"
- unfolding perm_def by simp
-
-lemma perm_MOST: "f \<in> perm \<Longrightarrow> MOST x. f x = x"
- unfolding perm_def MOST_iff_cofinite by simp
-
-lemma perm_id: "id \<in> perm"
- unfolding perm_def by simp
-
-lemma perm_comp:
- assumes f: "f \<in> perm" and g: "g \<in> perm"
- shows "(f \<circ> g) \<in> perm"
-apply (rule permI)
-apply (rule bij_comp)
-apply (rule perm_is_bij [OF g])
-apply (rule perm_is_bij [OF f])
-apply (rule MOST_rev_mp [OF perm_MOST [OF g]])
-apply (rule MOST_rev_mp [OF perm_MOST [OF f]])
-apply (simp)
-apply (simp add: perm_is_sort_respecting [OF f])
-apply (simp add: perm_is_sort_respecting [OF g])
-done
-
-lemma perm_inv:
- assumes f: "f \<in> perm"
- shows "(inv f) \<in> perm"
-apply (rule permI)
-apply (rule bij_imp_bij_inv)
-apply (rule perm_is_bij [OF f])
-apply (rule MOST_mono [OF perm_MOST [OF f]])
-apply (erule subst, rule inv_f_f)
-apply (rule bij_is_inj [OF perm_is_bij [OF f]])
-apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans])
-apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]])
-done
-
-lemma bij_Rep_perm: "bij (Rep_perm p)"
- using Rep_perm [of p] unfolding perm_def by simp
-
-lemma finite_Rep_perm: "finite {a. Rep_perm p a \<noteq> a}"
- using Rep_perm [of p] unfolding perm_def by simp
-
-lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a"
- using Rep_perm [of p] unfolding perm_def by simp
-
-lemma Rep_perm_ext:
- "Rep_perm p1 = Rep_perm p2 \<Longrightarrow> p1 = p2"
- by (simp add: expand_fun_eq Rep_perm_inject [symmetric])
-
-
-subsection {* Permutations form a group *}
-
-instantiation perm :: group_add
-begin
-
-definition
- "0 = Abs_perm id"
-
-definition
- "- p = Abs_perm (inv (Rep_perm p))"
-
-definition
- "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)"
-
-definition
- "(p1::perm) - p2 = p1 + - p2"
-
-lemma Rep_perm_0: "Rep_perm 0 = id"
- unfolding zero_perm_def
- by (simp add: Abs_perm_inverse perm_id)
-
-lemma Rep_perm_add:
- "Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2"
- unfolding plus_perm_def
- by (simp add: Abs_perm_inverse perm_comp Rep_perm)
-
-lemma Rep_perm_uminus:
- "Rep_perm (- p) = inv (Rep_perm p)"
- unfolding uminus_perm_def
- by (simp add: Abs_perm_inverse perm_inv Rep_perm)
-
-instance
-apply default
-unfolding Rep_perm_inject [symmetric]
-unfolding minus_perm_def
-unfolding Rep_perm_add
-unfolding Rep_perm_uminus
-unfolding Rep_perm_0
-by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])
-
-end
-
-
-section {* Implementation of swappings *}
-
-definition
- swap :: "atom \<Rightarrow> atom \<Rightarrow> perm" ("'(_ \<rightleftharpoons> _')")
-where
- "(a \<rightleftharpoons> b) =
- Abs_perm (if sort_of a = sort_of b
- then (\<lambda>c. if a = c then b else if b = c then a else c)
- else id)"
-
-lemma Rep_perm_swap:
- "Rep_perm (a \<rightleftharpoons> b) =
- (if sort_of a = sort_of b
- then (\<lambda>c. if a = c then b else if b = c then a else c)
- else id)"
-unfolding swap_def
-apply (rule Abs_perm_inverse)
-apply (rule permI)
-apply (auto simp add: bij_def inj_on_def surj_def)[1]
-apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]])
-apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]])
-apply (simp)
-apply (simp)
-done
-
-lemmas Rep_perm_simps =
- Rep_perm_0
- Rep_perm_add
- Rep_perm_uminus
- Rep_perm_swap
-
-lemma swap_different_sorts [simp]:
- "sort_of a \<noteq> sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) = 0"
- by (rule Rep_perm_ext) (simp add: Rep_perm_simps)
-
-lemma swap_cancel:
- "(a \<rightleftharpoons> b) + (a \<rightleftharpoons> b) = 0"
-by (rule Rep_perm_ext)
- (simp add: Rep_perm_simps expand_fun_eq)
-
-lemma swap_self [simp]:
- "(a \<rightleftharpoons> a) = 0"
- by (rule Rep_perm_ext, simp add: Rep_perm_simps expand_fun_eq)
-
-lemma minus_swap [simp]:
- "- (a \<rightleftharpoons> b) = (a \<rightleftharpoons> b)"
- by (rule minus_unique [OF swap_cancel])
-
-lemma swap_commute:
- "(a \<rightleftharpoons> b) = (b \<rightleftharpoons> a)"
- by (rule Rep_perm_ext)
- (simp add: Rep_perm_swap expand_fun_eq)
-
-lemma swap_triple:
- assumes "a \<noteq> b" and "c \<noteq> b"
- assumes "sort_of a = sort_of b" "sort_of b = sort_of c"
- shows "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)"
- using assms
- by (rule_tac Rep_perm_ext)
- (auto simp add: Rep_perm_simps expand_fun_eq)
-
-
-section {* Permutation Types *}
-
-text {*
- Infix syntax for @{text permute} has higher precedence than
- addition, but lower than unary minus.
-*}
-
-class pt =
- fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75)
- assumes permute_zero [simp]: "0 \<bullet> x = x"
- assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)"
-begin
-
-lemma permute_diff [simp]:
- shows "(p - q) \<bullet> x = p \<bullet> - q \<bullet> x"
- unfolding diff_minus by simp
-
-lemma permute_minus_cancel [simp]:
- shows "p \<bullet> - p \<bullet> x = x"
- and "- p \<bullet> p \<bullet> x = x"
- unfolding permute_plus [symmetric] by simp_all
-
-lemma permute_swap_cancel [simp]:
- shows "(a \<rightleftharpoons> b) \<bullet> (a \<rightleftharpoons> b) \<bullet> x = x"
- unfolding permute_plus [symmetric]
- by (simp add: swap_cancel)
-
-lemma permute_swap_cancel2 [simp]:
- shows "(a \<rightleftharpoons> b) \<bullet> (b \<rightleftharpoons> a) \<bullet> x = x"
- unfolding permute_plus [symmetric]
- by (simp add: swap_commute)
-
-lemma inj_permute [simp]:
- shows "inj (permute p)"
- by (rule inj_on_inverseI)
- (rule permute_minus_cancel)
-
-lemma surj_permute [simp]:
- shows "surj (permute p)"
- by (rule surjI, rule permute_minus_cancel)
-
-lemma bij_permute [simp]:
- shows "bij (permute p)"
- by (rule bijI [OF inj_permute surj_permute])
-
-lemma inv_permute:
- shows "inv (permute p) = permute (- p)"
- by (rule inv_equality) (simp_all)
-
-lemma permute_minus:
- shows "permute (- p) = inv (permute p)"
- by (simp add: inv_permute)
-
-lemma permute_eq_iff [simp]:
- shows "p \<bullet> x = p \<bullet> y \<longleftrightarrow> x = y"
- by (rule inj_permute [THEN inj_eq])
-
-end
-
-subsection {* Permutations for atoms *}
-
-instantiation atom :: pt
-begin
-
-definition
- "p \<bullet> a = Rep_perm p a"
-
-instance
-apply(default)
-apply(simp_all add: permute_atom_def Rep_perm_simps)
-done
-
-end
-
-lemma sort_of_permute [simp]:
- shows "sort_of (p \<bullet> a) = sort_of a"
- unfolding permute_atom_def by (rule sort_of_Rep_perm)
-
-lemma swap_atom:
- shows "(a \<rightleftharpoons> b) \<bullet> c =
- (if sort_of a = sort_of b
- then (if c = a then b else if c = b then a else c) else c)"
- unfolding permute_atom_def
- by (simp add: Rep_perm_swap)
-
-lemma swap_atom_simps [simp]:
- "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> a = b"
- "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> b = a"
- "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> c = c"
- unfolding swap_atom by simp_all
-
-lemma expand_perm_eq:
- fixes p q :: "perm"
- shows "p = q \<longleftrightarrow> (\<forall>a::atom. p \<bullet> a = q \<bullet> a)"
- unfolding permute_atom_def
- by (metis Rep_perm_ext ext)
-
-
-subsection {* Permutations for permutations *}
-
-instantiation perm :: pt
-begin
-
-definition
- "p \<bullet> q = p + q - p"
-
-instance
-apply default
-apply (simp add: permute_perm_def)
-apply (simp add: permute_perm_def diff_minus minus_add add_assoc)
-done
-
-end
-
-lemma permute_self: "p \<bullet> p = p"
-unfolding permute_perm_def by (simp add: diff_minus add_assoc)
-
-lemma permute_eqvt:
- shows "p \<bullet> (q \<bullet> x) = (p \<bullet> q) \<bullet> (p \<bullet> x)"
- unfolding permute_perm_def by simp
-
-lemma zero_perm_eqvt:
- shows "p \<bullet> (0::perm) = 0"
- unfolding permute_perm_def by simp
-
-lemma add_perm_eqvt:
- fixes p p1 p2 :: perm
- shows "p \<bullet> (p1 + p2) = p \<bullet> p1 + p \<bullet> p2"
- unfolding permute_perm_def
- by (simp add: expand_perm_eq)
-
-lemma swap_eqvt:
- shows "p \<bullet> (a \<rightleftharpoons> b) = (p \<bullet> a \<rightleftharpoons> p \<bullet> b)"
- unfolding permute_perm_def
- by (auto simp add: swap_atom expand_perm_eq)
-
-
-subsection {* Permutations for functions *}
-
-instantiation "fun" :: (pt, pt) pt
-begin
-
-definition
- "p \<bullet> f = (\<lambda>x. p \<bullet> (f (- p \<bullet> x)))"
-
-instance
-apply default
-apply (simp add: permute_fun_def)
-apply (simp add: permute_fun_def minus_add)
-done
-
-end
-
-lemma permute_fun_app_eq:
- shows "p \<bullet> (f x) = (p \<bullet> f) (p \<bullet> x)"
-unfolding permute_fun_def by simp
-
-
-subsection {* Permutations for booleans *}
-
-instantiation bool :: pt
-begin
-
-definition "p \<bullet> (b::bool) = b"
-
-instance
-apply(default)
-apply(simp_all add: permute_bool_def)
-done
-
-end
-
-lemma Not_eqvt:
- shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
-by (simp add: permute_bool_def)
-
-lemma permute_boolE:
- fixes P::"bool"
- shows "p \<bullet> P \<Longrightarrow> P"
- by (simp add: permute_bool_def)
-
-lemma permute_boolI:
- fixes P::"bool"
- shows "P \<Longrightarrow> p \<bullet> P"
- by(simp add: permute_bool_def)
-
-subsection {* Permutations for sets *}
-
-lemma permute_set_eq:
- fixes x::"'a::pt"
- and p::"perm"
- shows "(p \<bullet> X) = {p \<bullet> x | x. x \<in> X}"
- apply(auto simp add: permute_fun_def permute_bool_def mem_def)
- apply(rule_tac x="- p \<bullet> x" in exI)
- apply(simp)
- done
-
-lemma permute_set_eq_image:
- shows "p \<bullet> X = permute p ` X"
-unfolding permute_set_eq by auto
-
-lemma permute_set_eq_vimage:
- shows "p \<bullet> X = permute (- p) -` X"
-unfolding permute_fun_def permute_bool_def
-unfolding vimage_def Collect_def mem_def ..
-
-lemma swap_set_not_in:
- assumes a: "a \<notin> S" "b \<notin> S"
- shows "(a \<rightleftharpoons> b) \<bullet> S = S"
- using a by (auto simp add: permute_set_eq swap_atom)
-
-lemma swap_set_in:
- assumes a: "a \<in> S" "b \<notin> S" "sort_of a = sort_of b"
- shows "(a \<rightleftharpoons> b) \<bullet> S \<noteq> S"
- using a by (auto simp add: permute_set_eq swap_atom)
-
-
-subsection {* Permutations for units *}
-
-instantiation unit :: pt
-begin
-
-definition "p \<bullet> (u::unit) = u"
-
-instance proof
-qed (simp_all add: permute_unit_def)
-
-end
-
-
-subsection {* Permutations for products *}
-
-instantiation "*" :: (pt, pt) pt
-begin
-
-primrec
- permute_prod
-where
- Pair_eqvt: "p \<bullet> (x, y) = (p \<bullet> x, p \<bullet> y)"
-
-instance
-by default auto
-
-end
-
-subsection {* Permutations for sums *}
-
-instantiation "+" :: (pt, pt) pt
-begin
-
-primrec
- permute_sum
-where
- "p \<bullet> (Inl x) = Inl (p \<bullet> x)"
-| "p \<bullet> (Inr y) = Inr (p \<bullet> y)"
-
-instance proof
-qed (case_tac [!] x, simp_all)
-
-end
-
-subsection {* Permutations for lists *}
-
-instantiation list :: (pt) pt
-begin
-
-primrec
- permute_list
-where
- "p \<bullet> [] = []"
-| "p \<bullet> (x # xs) = p \<bullet> x # p \<bullet> xs"
-
-instance proof
-qed (induct_tac [!] x, simp_all)
-
-end
-
-subsection {* Permutations for options *}
-
-instantiation option :: (pt) pt
-begin
-
-primrec
- permute_option
-where
- "p \<bullet> None = None"
-| "p \<bullet> (Some x) = Some (p \<bullet> x)"
-
-instance proof
-qed (induct_tac [!] x, simp_all)
-
-end
-
-subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *}
-
-instantiation char :: pt
-begin
-
-definition "p \<bullet> (c::char) = c"
-
-instance proof
-qed (simp_all add: permute_char_def)
-
-end
-
-instantiation nat :: pt
-begin
-
-definition "p \<bullet> (n::nat) = n"
-
-instance proof
-qed (simp_all add: permute_nat_def)
-
-end
-
-instantiation int :: pt
-begin
-
-definition "p \<bullet> (i::int) = i"
-
-instance proof
-qed (simp_all add: permute_int_def)
-
-end
-
-
-section {* Pure types *}
-
-text {* Pure types will have always empty support. *}
-
-class pure = pt +
- assumes permute_pure: "p \<bullet> x = x"
-
-text {* Types @{typ unit} and @{typ bool} are pure. *}
-
-instance unit :: pure
-proof qed (rule permute_unit_def)
-
-instance bool :: pure
-proof qed (rule permute_bool_def)
-
-text {* Other type constructors preserve purity. *}
-
-instance "fun" :: (pure, pure) pure
-by default (simp add: permute_fun_def permute_pure)
-
-instance "*" :: (pure, pure) pure
-by default (induct_tac x, simp add: permute_pure)
-
-instance "+" :: (pure, pure) pure
-by default (induct_tac x, simp_all add: permute_pure)
-
-instance list :: (pure) pure
-by default (induct_tac x, simp_all add: permute_pure)
-
-instance option :: (pure) pure
-by default (induct_tac x, simp_all add: permute_pure)
-
-
-subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *}
-
-instance char :: pure
-proof qed (rule permute_char_def)
-
-instance nat :: pure
-proof qed (rule permute_nat_def)
-
-instance int :: pure
-proof qed (rule permute_int_def)
-
-
-subsection {* Supp, Freshness and Supports *}
-
-context pt
-begin
-
-definition
- supp :: "'a \<Rightarrow> atom set"
-where
- "supp x = {a. infinite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}}"
-
-end
-
-definition
- fresh :: "atom \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp> _" [55, 55] 55)
-where
- "a \<sharp> x \<equiv> a \<notin> supp x"
-
-lemma supp_conv_fresh:
- shows "supp x = {a. \<not> a \<sharp> x}"
- unfolding fresh_def by simp
-
-lemma swap_rel_trans:
- assumes "sort_of a = sort_of b"
- assumes "sort_of b = sort_of c"
- assumes "(a \<rightleftharpoons> c) \<bullet> x = x"
- assumes "(b \<rightleftharpoons> c) \<bullet> x = x"
- shows "(a \<rightleftharpoons> b) \<bullet> x = x"
-proof (cases)
- assume "a = b \<or> c = b"
- with assms show "(a \<rightleftharpoons> b) \<bullet> x = x" by auto
-next
- assume *: "\<not> (a = b \<or> c = b)"
- have "((a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c)) \<bullet> x = x"
- using assms by simp
- also have "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)"
- using assms * by (simp add: swap_triple)
- finally show "(a \<rightleftharpoons> b) \<bullet> x = x" .
-qed
-
-lemma swap_fresh_fresh:
- assumes a: "a \<sharp> x"
- and b: "b \<sharp> x"
- shows "(a \<rightleftharpoons> b) \<bullet> x = x"
-proof (cases)
- assume asm: "sort_of a = sort_of b"
- have "finite {c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x}" "finite {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x}"
- using a b unfolding fresh_def supp_def by simp_all
- then have "finite ({c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x} \<union> {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x})" by simp
- then obtain c
- where "(a \<rightleftharpoons> c) \<bullet> x = x" "(b \<rightleftharpoons> c) \<bullet> x = x" "sort_of c = sort_of b"
- by (rule obtain_atom) (auto)
- then show "(a \<rightleftharpoons> b) \<bullet> x = x" using asm by (rule_tac swap_rel_trans) (simp_all)
-next
- assume "sort_of a \<noteq> sort_of b"
- then show "(a \<rightleftharpoons> b) \<bullet> x = x" by simp
-qed
-
-
-subsection {* supp and fresh are equivariant *}
-
-lemma finite_Collect_bij:
- assumes a: "bij f"
- shows "finite {x. P (f x)} = finite {x. P x}"
-by (metis a finite_vimage_iff vimage_Collect_eq)
-
-lemma fresh_permute_iff:
- shows "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> a \<sharp> x"
-proof -
- have "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> finite {b. (p \<bullet> a \<rightleftharpoons> b) \<bullet> p \<bullet> x \<noteq> p \<bullet> x}"
- unfolding fresh_def supp_def by simp
- also have "\<dots> \<longleftrightarrow> finite {b. (p \<bullet> a \<rightleftharpoons> p \<bullet> b) \<bullet> p \<bullet> x \<noteq> p \<bullet> x}"
- using bij_permute by (rule finite_Collect_bij [symmetric])
- also have "\<dots> \<longleftrightarrow> finite {b. p \<bullet> (a \<rightleftharpoons> b) \<bullet> x \<noteq> p \<bullet> x}"
- by (simp only: permute_eqvt [of p] swap_eqvt)
- also have "\<dots> \<longleftrightarrow> finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}"
- by (simp only: permute_eq_iff)
- also have "\<dots> \<longleftrightarrow> a \<sharp> x"
- unfolding fresh_def supp_def by simp
- finally show ?thesis .
-qed
-
-lemma fresh_eqvt:
- shows "p \<bullet> (a \<sharp> x) = (p \<bullet> a) \<sharp> (p \<bullet> x)"
- by (simp add: permute_bool_def fresh_permute_iff)
-
-lemma supp_eqvt:
- fixes p :: "perm"
- and x :: "'a::pt"
- shows "p \<bullet> (supp x) = supp (p \<bullet> x)"
- unfolding supp_conv_fresh
- unfolding permute_fun_def Collect_def
- by (simp add: Not_eqvt fresh_eqvt)
-
-subsection {* supports *}
-
-definition
- supports :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" (infixl "supports" 80)
-where
- "S supports x \<equiv> \<forall>a b. (a \<notin> S \<and> b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x)"
-
-lemma supp_is_subset:
- fixes S :: "atom set"
- and x :: "'a::pt"
- assumes a1: "S supports x"
- and a2: "finite S"
- shows "(supp x) \<subseteq> S"
-proof (rule ccontr)
- assume "\<not>(supp x \<subseteq> S)"
- then obtain a where b1: "a \<in> supp x" and b2: "a \<notin> S" by auto
- from a1 b2 have "\<forall>b. b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x" by (unfold supports_def) (auto)
- hence "{b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x} \<subseteq> S" by auto
- with a2 have "finite {b. (a \<rightleftharpoons> b)\<bullet>x \<noteq> x}" by (simp add: finite_subset)
- then have "a \<notin> (supp x)" unfolding supp_def by simp
- with b1 show False by simp
-qed
-
-lemma supports_finite:
- fixes S :: "atom set"
- and x :: "'a::pt"
- assumes a1: "S supports x"
- and a2: "finite S"
- shows "finite (supp x)"
-proof -
- have "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
- then show "finite (supp x)" using a2 by (simp add: finite_subset)
-qed
-
-lemma supp_supports:
- fixes x :: "'a::pt"
- shows "(supp x) supports x"
-proof (unfold supports_def, intro strip)
- fix a b
- assume "a \<notin> (supp x) \<and> b \<notin> (supp x)"
- then have "a \<sharp> x" and "b \<sharp> x" by (simp_all add: fresh_def)
- then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (rule swap_fresh_fresh)
-qed
-
-lemma supp_is_least_supports:
- fixes S :: "atom set"
- and x :: "'a::pt"
- assumes a1: "S supports x"
- and a2: "finite S"
- and a3: "\<And>S'. finite S' \<Longrightarrow> (S' supports x) \<Longrightarrow> S \<subseteq> S'"
- shows "(supp x) = S"
-proof (rule equalityI)
- show "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
- with a2 have fin: "finite (supp x)" by (rule rev_finite_subset)
- have "(supp x) supports x" by (rule supp_supports)
- with fin a3 show "S \<subseteq> supp x" by blast
-qed
-
-lemma subsetCI:
- shows "(\<And>x. x \<in> A \<Longrightarrow> x \<notin> B \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> B"
- by auto
-
-lemma finite_supp_unique:
- assumes a1: "S supports x"
- assumes a2: "finite S"
- assumes a3: "\<And>a b. \<lbrakk>a \<in> S; b \<notin> S; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x \<noteq> x"
- shows "(supp x) = S"
- using a1 a2
-proof (rule supp_is_least_supports)
- fix S'
- assume "finite S'" and "S' supports x"
- show "S \<subseteq> S'"
- proof (rule subsetCI)
- fix a
- assume "a \<in> S" and "a \<notin> S'"
- have "finite (S \<union> S')"
- using `finite S` `finite S'` by simp
- then obtain b where "b \<notin> S \<union> S'" and "sort_of b = sort_of a"
- by (rule obtain_atom)
- then have "b \<notin> S" and "b \<notin> S'" and "sort_of a = sort_of b"
- by simp_all
- then have "(a \<rightleftharpoons> b) \<bullet> x = x"
- using `a \<notin> S'` `S' supports x` by (simp add: supports_def)
- moreover have "(a \<rightleftharpoons> b) \<bullet> x \<noteq> x"
- using `a \<in> S` `b \<notin> S` `sort_of a = sort_of b`
- by (rule a3)
- ultimately show "False" by simp
- qed
-qed
-
-section {* Finitely-supported types *}
-
-class fs = pt +
- assumes finite_supp: "finite (supp x)"
-
-lemma pure_supp:
- shows "supp (x::'a::pure) = {}"
- unfolding supp_def by (simp add: permute_pure)
-
-lemma pure_fresh:
- fixes x::"'a::pure"
- shows "a \<sharp> x"
- unfolding fresh_def by (simp add: pure_supp)
-
-instance pure < fs
-by default (simp add: pure_supp)
-
-
-subsection {* Type @{typ atom} is finitely-supported. *}
-
-lemma supp_atom:
- shows "supp a = {a}"
-apply (rule finite_supp_unique)
-apply (clarsimp simp add: supports_def)
-apply simp
-apply simp
-done
-
-lemma fresh_atom:
- shows "a \<sharp> b \<longleftrightarrow> a \<noteq> b"
- unfolding fresh_def supp_atom by simp
-
-instance atom :: fs
-by default (simp add: supp_atom)
-
-
-section {* Type @{typ perm} is finitely-supported. *}
-
-lemma perm_swap_eq:
- shows "(a \<rightleftharpoons> b) \<bullet> p = p \<longleftrightarrow> (p \<bullet> (a \<rightleftharpoons> b)) = (a \<rightleftharpoons> b)"
-unfolding permute_perm_def
-by (metis add_diff_cancel minus_perm_def)
-
-lemma supports_perm:
- shows "{a. p \<bullet> a \<noteq> a} supports p"
- unfolding supports_def
- by (simp add: perm_swap_eq swap_eqvt)
-
-lemma finite_perm_lemma:
- shows "finite {a::atom. p \<bullet> a \<noteq> a}"
- using finite_Rep_perm [of p]
- unfolding permute_atom_def .
-
-lemma supp_perm:
- shows "supp p = {a. p \<bullet> a \<noteq> a}"
-apply (rule finite_supp_unique)
-apply (rule supports_perm)
-apply (rule finite_perm_lemma)
-apply (simp add: perm_swap_eq swap_eqvt)
-apply (auto simp add: expand_perm_eq swap_atom)
-done
-
-lemma fresh_perm:
- shows "a \<sharp> p \<longleftrightarrow> p \<bullet> a = a"
-unfolding fresh_def by (simp add: supp_perm)
-
-lemma supp_swap:
- shows "supp (a \<rightleftharpoons> b) = (if a = b \<or> sort_of a \<noteq> sort_of b then {} else {a, b})"
- by (auto simp add: supp_perm swap_atom)
-
-lemma fresh_zero_perm:
- shows "a \<sharp> (0::perm)"
- unfolding fresh_perm by simp
-
-lemma supp_zero_perm:
- shows "supp (0::perm) = {}"
- unfolding supp_perm by simp
-
-lemma fresh_plus_perm:
- fixes p q::perm
- assumes "a \<sharp> p" "a \<sharp> q"
- shows "a \<sharp> (p + q)"
- using assms
- unfolding fresh_def
- by (auto simp add: supp_perm)
-
-lemma supp_plus_perm:
- fixes p q::perm
- shows "supp (p + q) \<subseteq> supp p \<union> supp q"
- by (auto simp add: supp_perm)
-
-lemma fresh_minus_perm:
- fixes p::perm
- shows "a \<sharp> (- p) \<longleftrightarrow> a \<sharp> p"
- unfolding fresh_def
- apply(auto simp add: supp_perm)
- apply(metis permute_minus_cancel)+
- done
-
-lemma supp_minus_perm:
- fixes p::perm
- shows "supp (- p) = supp p"
- unfolding supp_conv_fresh
- by (simp add: fresh_minus_perm)
-
-instance perm :: fs
-by default (simp add: supp_perm finite_perm_lemma)
-
-lemma plus_perm_eq:
- fixes p q::"perm"
- assumes asm: "supp p \<inter> supp q = {}"
- shows "p + q = q + p"
-unfolding expand_perm_eq
-proof
- fix a::"atom"
- show "(p + q) \<bullet> a = (q + p) \<bullet> a"
- proof -
- { assume "a \<notin> supp p" "a \<notin> supp q"
- then have "(p + q) \<bullet> a = (q + p) \<bullet> a"
- by (simp add: supp_perm)
- }
- moreover
- { assume a: "a \<in> supp p" "a \<notin> supp q"
- then have "p \<bullet> a \<in> supp p" by (simp add: supp_perm)
- then have "p \<bullet> a \<notin> supp q" using asm by auto
- with a have "(p + q) \<bullet> a = (q + p) \<bullet> a"
- by (simp add: supp_perm)
- }
- moreover
- { assume a: "a \<notin> supp p" "a \<in> supp q"
- then have "q \<bullet> a \<in> supp q" by (simp add: supp_perm)
- then have "q \<bullet> a \<notin> supp p" using asm by auto
- with a have "(p + q) \<bullet> a = (q + p) \<bullet> a"
- by (simp add: supp_perm)
- }
- ultimately show "(p + q) \<bullet> a = (q + p) \<bullet> a"
- using asm by blast
- qed
-qed
-
-section {* Finite Support instances for other types *}
-
-subsection {* Type @{typ "'a \<times> 'b"} is finitely-supported. *}
-
-lemma supp_Pair:
- shows "supp (x, y) = supp x \<union> supp y"
- by (simp add: supp_def Collect_imp_eq Collect_neg_eq)
-
-lemma fresh_Pair:
- shows "a \<sharp> (x, y) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> y"
- by (simp add: fresh_def supp_Pair)
-
-instance "*" :: (fs, fs) fs
-apply default
-apply (induct_tac x)
-apply (simp add: supp_Pair finite_supp)
-done
-
-subsection {* Type @{typ "'a + 'b"} is finitely supported *}
-
-lemma supp_Inl:
- shows "supp (Inl x) = supp x"
- by (simp add: supp_def)
-
-lemma supp_Inr:
- shows "supp (Inr x) = supp x"
- by (simp add: supp_def)
-
-lemma fresh_Inl:
- shows "a \<sharp> Inl x \<longleftrightarrow> a \<sharp> x"
- by (simp add: fresh_def supp_Inl)
-
-lemma fresh_Inr:
- shows "a \<sharp> Inr y \<longleftrightarrow> a \<sharp> y"
- by (simp add: fresh_def supp_Inr)
-
-instance "+" :: (fs, fs) fs
-apply default
-apply (induct_tac x)
-apply (simp_all add: supp_Inl supp_Inr finite_supp)
-done
-
-subsection {* Type @{typ "'a option"} is finitely supported *}
-
-lemma supp_None:
- shows "supp None = {}"
-by (simp add: supp_def)
-
-lemma supp_Some:
- shows "supp (Some x) = supp x"
- by (simp add: supp_def)
-
-lemma fresh_None:
- shows "a \<sharp> None"
- by (simp add: fresh_def supp_None)
-
-lemma fresh_Some:
- shows "a \<sharp> Some x \<longleftrightarrow> a \<sharp> x"
- by (simp add: fresh_def supp_Some)
-
-instance option :: (fs) fs
-apply default
-apply (induct_tac x)
-apply (simp_all add: supp_None supp_Some finite_supp)
-done
-
-subsubsection {* Type @{typ "'a list"} is finitely supported *}
-
-lemma supp_Nil:
- shows "supp [] = {}"
- by (simp add: supp_def)
-
-lemma supp_Cons:
- shows "supp (x # xs) = supp x \<union> supp xs"
-by (simp add: supp_def Collect_imp_eq Collect_neg_eq)
-
-lemma fresh_Nil:
- shows "a \<sharp> []"
- by (simp add: fresh_def supp_Nil)
-
-lemma fresh_Cons:
- shows "a \<sharp> (x # xs) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> xs"
- by (simp add: fresh_def supp_Cons)
-
-instance list :: (fs) fs
-apply default
-apply (induct_tac x)
-apply (simp_all add: supp_Nil supp_Cons finite_supp)
-done
-
-section {* Support and freshness for applications *}
-
-lemma supp_fun_app:
- shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)"
-proof (rule subsetCI)
- fix a::"atom"
- assume a: "a \<in> supp (f x)"
- assume b: "a \<notin> supp f \<union> supp x"
- then have "finite {b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f}" "finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}"
- unfolding supp_def by auto
- then have "finite ({b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f} \<union> {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x})" by simp
- moreover
- have "{b. ((a \<rightleftharpoons> b) \<bullet> f) ((a \<rightleftharpoons> b) \<bullet> x) \<noteq> f x} \<subseteq> ({b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f} \<union> {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x})"
- by auto
- ultimately have "finite {b. ((a \<rightleftharpoons> b) \<bullet> f) ((a \<rightleftharpoons> b) \<bullet> x) \<noteq> f x}"
- using finite_subset by auto
- then have "a \<notin> supp (f x)" unfolding supp_def
- by (simp add: permute_fun_app_eq)
- with a show "False" by simp
-qed
-
-lemma fresh_fun_app:
- shows "a \<sharp> (f, x) \<Longrightarrow> a \<sharp> f x"
-unfolding fresh_def
-using supp_fun_app
-by (auto simp add: supp_Pair)
-
-lemma fresh_fun_eqvt_app:
- assumes a: "\<forall>p. p \<bullet> f = f"
- shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
-proof -
- from a have b: "supp f = {}"
- unfolding supp_def by simp
- show "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
- unfolding fresh_def
- using supp_fun_app b
- by auto
-qed
-
-end