--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal-General/Atoms.thy Sun Apr 04 21:39:28 2010 +0200
@@ -0,0 +1,164 @@
+(* Title: Atoms
+ Authors: Brian Huffman, Christian Urban
+
+ Instantiations of concrete atoms
+*)
+theory Atoms
+imports Nominal2_Atoms
+begin
+
+section {* Manual instantiation of class @{text at}. *}
+
+typedef (open) name = "{a. sort_of a = Sort ''name'' []}"
+by (rule exists_eq_simple_sort)
+
+instantiation name :: at
+begin
+
+definition
+ "p \<bullet> a = Abs_name (p \<bullet> Rep_name a)"
+
+definition
+ "atom a = Rep_name a"
+
+instance
+apply (rule at_class)
+apply (rule type_definition_name)
+apply (rule atom_name_def)
+apply (rule permute_name_def)
+done
+
+end
+
+lemma sort_of_atom_name:
+ shows "sort_of (atom (a::name)) = Sort ''name'' []"
+ unfolding atom_name_def using Rep_name by simp
+
+text {* Custom syntax for concrete atoms of type at *}
+
+term "a:::name"
+
+text {*
+ a:::name stands for (atom a) with a being of concrete atom
+ type name. The above lemma can therefore also be stated as
+
+ "sort_of (a:::name) = Sort ''name'' []"
+
+ This does not work for multi-sorted atoms.
+*}
+
+
+section {* Automatic instantiation of class @{text at}. *}
+
+atom_decl name2
+
+lemma sort_of_atom_name2:
+ "sort_of (atom (a::name2)) = Sort ''Atoms.name2'' []"
+unfolding atom_name2_def
+using Rep_name2
+by simp
+
+text {* example swappings *}
+lemma
+ fixes a b::"atom"
+ assumes "sort_of a = sort_of b"
+ shows "(a \<rightleftharpoons> b) \<bullet> (a, b) = (b, a)"
+using assms
+by simp
+
+lemma
+ fixes a b::"name2"
+ shows "(a \<leftrightarrow> b) \<bullet> (a, b) = (b, a)"
+by simp
+
+section {* An example for multiple-sort atoms *}
+
+datatype ty =
+ TVar string
+| Fun ty ty ("_ \<rightarrow> _")
+
+primrec
+ sort_of_ty::"ty \<Rightarrow> atom_sort"
+where
+ "sort_of_ty (TVar s) = Sort ''TVar'' [Sort s []]"
+| "sort_of_ty (Fun ty1 ty2) = Sort ''Fun'' [sort_of_ty ty1, sort_of_ty ty2]"
+
+lemma sort_of_ty_eq_iff:
+ shows "sort_of_ty x = sort_of_ty y \<longleftrightarrow> x = y"
+apply(induct x arbitrary: y)
+apply(case_tac [!] y)
+apply(simp_all)
+done
+
+declare sort_of_ty.simps [simp del]
+
+typedef (open) var = "{a. sort_of a \<in> range sort_of_ty}"
+ by (rule_tac x="Atom (sort_of_ty x) y" in exI, simp)
+
+instantiation var :: at_base
+begin
+
+definition
+ "p \<bullet> a = Abs_var (p \<bullet> Rep_var a)"
+
+definition
+ "atom a = Rep_var a"
+
+instance
+apply (rule at_base_class)
+apply (rule type_definition_var)
+apply (rule atom_var_def)
+apply (rule permute_var_def)
+done
+
+end
+
+text {* Constructor for variables. *}
+
+definition
+ Var :: "nat \<Rightarrow> ty \<Rightarrow> var"
+where
+ "Var x t = Abs_var (Atom (sort_of_ty t) x)"
+
+lemma Var_eq_iff [simp]:
+ shows "Var x s = Var y t \<longleftrightarrow> x = y \<and> s = t"
+ unfolding Var_def
+ by (auto simp add: Abs_var_inject sort_of_ty_eq_iff)
+
+lemma sort_of_atom_var [simp]:
+ "sort_of (atom (Var n ty)) = sort_of_ty ty"
+ unfolding atom_var_def Var_def
+ by (simp add: Abs_var_inverse)
+
+lemma
+ assumes "\<alpha> \<noteq> \<beta>"
+ shows "(Var x \<alpha> \<leftrightarrow> Var y \<alpha>) \<bullet> (Var x \<alpha>, Var x \<beta>) = (Var y \<alpha>, Var x \<beta>)"
+ using assms by simp
+
+text {* Projecting out the type component of a variable. *}
+
+definition
+ ty_of :: "var \<Rightarrow> ty"
+where
+ "ty_of x = inv sort_of_ty (sort_of (atom x))"
+
+text {*
+ Functions @{term Var}/@{term ty_of} satisfy many of the same
+ properties as @{term Atom}/@{term sort_of}.
+*}
+
+lemma ty_of_Var [simp]:
+ shows "ty_of (Var x t) = t"
+ unfolding ty_of_def
+ unfolding sort_of_atom_var
+ apply (rule inv_f_f)
+ apply (simp add: inj_on_def sort_of_ty_eq_iff)
+ done
+
+lemma ty_of_permute [simp]:
+ shows "ty_of (p \<bullet> x) = ty_of x"
+ unfolding ty_of_def
+ unfolding atom_eqvt [symmetric]
+ by simp
+
+end