--- a/Nominal-General/Nominal2_Base.thy Sat Sep 04 06:48:14 2010 +0800
+++ b/Nominal-General/Nominal2_Base.thy Sat Sep 04 07:28:35 2010 +0800
@@ -444,6 +444,11 @@
unfolding permute_fun_def permute_bool_def
by (auto, rule_tac x="p \<bullet> x" in exI, simp)
+lemma all_eqvt:
+ shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
+ unfolding permute_fun_def permute_bool_def
+ by (auto, drule_tac x="p \<bullet> x" in spec, simp)
+
lemma permute_boolE:
fixes P::"bool"
shows "p \<bullet> P \<Longrightarrow> P"
@@ -488,6 +493,21 @@
unfolding permute_set_eq
using a by (auto simp add: swap_atom)
+lemma mem_permute_iff:
+ shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
+ unfolding mem_def permute_fun_def permute_bool_def
+ by simp
+
+lemma mem_eqvt:
+ shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
+ unfolding mem_def
+ by (simp add: permute_fun_app_eq)
+
+lemma insert_eqvt:
+ shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
+ unfolding permute_set_eq_image image_insert ..
+
+
subsection {* Permutations for units *}
instantiation unit :: pt
@@ -996,6 +1016,16 @@
shows "a \<sharp> (x, y) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> y"
by (simp add: fresh_def supp_Pair)
+lemma supp_Unit:
+ shows "supp () = {}"
+ by (simp add: supp_def)
+
+lemma fresh_Unit:
+ shows "a \<sharp> ()"
+ by (simp add: fresh_def supp_Unit)
+
+
+
instance prod :: (fs, fs) fs
apply default
apply (induct_tac x)
@@ -1075,7 +1105,7 @@
done
-section {* Support and freshness for applications *}
+section {* Support and Freshness for Applications *}
lemma fresh_conv_MOST:
shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)"
@@ -1103,7 +1133,7 @@
unfolding fresh_def
by auto
-text {* support of equivariant functions *}
+text {* Support of Equivariant Functions *}
lemma supp_fun_eqvt:
assumes a: "\<And>p. p \<bullet> f = f"
@@ -1194,7 +1224,274 @@
by (simp add: supp_of_fin_sets)
-section {* Concrete atoms types *}
+section {* Fresh-Star *}
+
+
+text {* The fresh-star generalisation of fresh is used in strong
+ induction principles. *}
+
+definition
+ fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80)
+where
+ "as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x"
+
+lemma fresh_star_prod:
+ fixes as::"atom set"
+ shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)"
+ by (auto simp add: fresh_star_def fresh_Pair)
+
+lemma fresh_star_union:
+ shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)"
+ by (auto simp add: fresh_star_def)
+
+lemma fresh_star_insert:
+ shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)"
+ by (auto simp add: fresh_star_def)
+
+lemma fresh_star_Un_elim:
+ "((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)"
+ unfolding fresh_star_def
+ apply(rule)
+ apply(erule meta_mp)
+ apply(auto)
+ done
+
+lemma fresh_star_insert_elim:
+ "(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)"
+ unfolding fresh_star_def
+ by rule (simp_all add: fresh_star_def)
+
+lemma fresh_star_empty_elim:
+ "({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C"
+ by (simp add: fresh_star_def)
+
+lemma fresh_star_unit_elim:
+ shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C"
+ by (simp add: fresh_star_def fresh_Unit)
+
+lemma fresh_star_prod_elim:
+ shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
+ by (rule, simp_all add: fresh_star_prod)
+
+lemma fresh_star_zero:
+ shows "as \<sharp>* (0::perm)"
+ unfolding fresh_star_def
+ by (simp add: fresh_zero_perm)
+
+lemma fresh_star_plus:
+ fixes p q::perm
+ shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
+ unfolding fresh_star_def
+ by (simp add: fresh_plus_perm)
+
+lemma fresh_star_permute_iff:
+ shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
+ unfolding fresh_star_def
+ by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)
+
+lemma fresh_star_eqvt:
+ shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)"
+unfolding fresh_star_def
+unfolding Ball_def
+apply(simp add: all_eqvt)
+apply(subst permute_fun_def)
+apply(simp add: imp_eqvt fresh_eqvt mem_eqvt)
+done
+
+
+section {* Induction principle for permutations *}
+
+
+lemma perm_struct_induct[consumes 1, case_names zero swap]:
+ assumes S: "supp p \<subseteq> S"
+ and zero: "P 0"
+ and swap: "\<And>p a b. \<lbrakk>P p; supp p \<subseteq> S; a \<in> S; b \<in> S; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
+ shows "P p"
+proof -
+ have "finite (supp p)" by (simp add: finite_supp)
+ then show "P p" using S
+ proof(induct A\<equiv>"supp p" arbitrary: p rule: finite_psubset_induct)
+ case (psubset p)
+ then have ih: "\<And>q. supp q \<subset> supp p \<Longrightarrow> P q" by auto
+ have as: "supp p \<subseteq> S" by fact
+ { assume "supp p = {}"
+ then have "p = 0" by (simp add: supp_perm expand_perm_eq)
+ then have "P p" using zero by simp
+ }
+ moreover
+ { assume "supp p \<noteq> {}"
+ then obtain a where a0: "a \<in> supp p" by blast
+ then have a1: "p \<bullet> a \<in> S" "a \<in> S" "sort_of (p \<bullet> a) = sort_of a" "p \<bullet> a \<noteq> a"
+ using as by (auto simp add: supp_atom supp_perm swap_atom)
+ let ?q = "(p \<bullet> a \<rightleftharpoons> a) + p"
+ have a2: "supp ?q \<subseteq> supp p" unfolding supp_perm by (auto simp add: swap_atom)
+ moreover
+ have "a \<notin> supp ?q" by (simp add: supp_perm)
+ then have "supp ?q \<noteq> supp p" using a0 by auto
+ ultimately have "supp ?q \<subset> supp p" using a2 by auto
+ then have "P ?q" using ih by simp
+ moreover
+ have "supp ?q \<subseteq> S" using as a2 by simp
+ ultimately have "P ((p \<bullet> a \<rightleftharpoons> a) + ?q)" using as a1 swap by simp
+ moreover
+ have "p = (p \<bullet> a \<rightleftharpoons> a) + ?q" by (simp add: expand_perm_eq)
+ ultimately have "P p" by simp
+ }
+ ultimately show "P p" by blast
+ qed
+qed
+
+lemma perm_simple_struct_induct[case_names zero swap]:
+ assumes zero: "P 0"
+ and swap: "\<And>p a b. \<lbrakk>P p; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
+ shows "P p"
+by (rule_tac S="supp p" in perm_struct_induct)
+ (auto intro: zero swap)
+
+lemma perm_subset_induct[consumes 1, case_names zero swap plus]:
+ assumes S: "supp p \<subseteq> S"
+ assumes zero: "P 0"
+ assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b; a \<in> S; b \<in> S\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
+ assumes plus: "\<And>p1 p2. \<lbrakk>P p1; P p2; supp p1 \<subseteq> S; supp p2 \<subseteq> S\<rbrakk> \<Longrightarrow> P (p1 + p2)"
+ shows "P p"
+using S
+by (induct p rule: perm_struct_induct)
+ (auto intro: zero plus swap simp add: supp_swap)
+
+lemma supp_perm_eq:
+ assumes "(supp x) \<sharp>* p"
+ shows "p \<bullet> x = x"
+proof -
+ from assms have "supp p \<subseteq> {a. a \<sharp> x}"
+ unfolding supp_perm fresh_star_def fresh_def by auto
+ then show "p \<bullet> x = x"
+ proof (induct p rule: perm_struct_induct)
+ case zero
+ show "0 \<bullet> x = x" by simp
+ next
+ case (swap p a b)
+ then have "a \<sharp> x" "b \<sharp> x" "p \<bullet> x = x" by simp_all
+ then show "((a \<rightleftharpoons> b) + p) \<bullet> x = x" by (simp add: swap_fresh_fresh)
+ qed
+qed
+
+lemma supp_perm_eq_test:
+ assumes "(supp x) \<sharp>* p"
+ shows "p \<bullet> x = x"
+proof -
+ from assms have "supp p \<subseteq> {a. a \<sharp> x}"
+ unfolding supp_perm fresh_star_def fresh_def by auto
+ then show "p \<bullet> x = x"
+ proof (induct p rule: perm_subset_induct)
+ case zero
+ show "0 \<bullet> x = x" by simp
+ next
+ case (swap a b)
+ then have "a \<sharp> x" "b \<sharp> x" by simp_all
+ then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh)
+ next
+ case (plus p1 p2)
+ have "p1 \<bullet> x = x" "p2 \<bullet> x = x" by fact+
+ then show "(p1 + p2) \<bullet> x = x" by simp
+ qed
+qed
+
+
+section {* Avoiding of atom sets *}
+
+text {*
+ For every set of atoms, there is another set of atoms
+ avoiding a finitely supported c and there is a permutation
+ which 'translates' between both sets.
+*}
+
+lemma at_set_avoiding_aux:
+ fixes Xs::"atom set"
+ and As::"atom set"
+ assumes b: "Xs \<subseteq> As"
+ and c: "finite As"
+ shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
+proof -
+ from b c have "finite Xs" by (rule finite_subset)
+ then show ?thesis using b
+ proof (induct rule: finite_subset_induct)
+ case empty
+ have "0 \<bullet> {} \<inter> As = {}" by simp
+ moreover
+ have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm)
+ ultimately show ?case by blast
+ next
+ case (insert x Xs)
+ then obtain p where
+ p1: "(p \<bullet> Xs) \<inter> As = {}" and
+ p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast
+ from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast
+ with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast
+ hence px: "p \<bullet> x = x" unfolding supp_perm by simp
+ have "finite (As \<union> p \<bullet> Xs)"
+ using `finite As` `finite Xs`
+ by (simp add: permute_set_eq_image)
+ then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x"
+ by (rule obtain_atom)
+ hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x"
+ by simp_all
+ let ?q = "(x \<rightleftharpoons> y) + p"
+ have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)"
+ unfolding insert_eqvt
+ using `p \<bullet> x = x` `sort_of y = sort_of x`
+ using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs`
+ by (simp add: swap_atom swap_set_not_in)
+ have "?q \<bullet> insert x Xs \<inter> As = {}"
+ using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}`
+ unfolding q by simp
+ moreover
+ have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs"
+ using p2 unfolding q
+ by (intro subset_trans [OF supp_plus_perm])
+ (auto simp add: supp_swap)
+ ultimately show ?case by blast
+ qed
+qed
+
+lemma at_set_avoiding:
+ assumes a: "finite Xs"
+ and b: "finite (supp c)"
+ obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
+ using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"]
+ unfolding fresh_star_def fresh_def by blast
+
+lemma at_set_avoiding2:
+ assumes "finite xs"
+ and "finite (supp c)" "finite (supp x)"
+ and "xs \<sharp>* x"
+ shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
+using assms
+apply(erule_tac c="(c, x)" in at_set_avoiding)
+apply(simp add: supp_Pair)
+apply(rule_tac x="p" in exI)
+apply(simp add: fresh_star_prod)
+apply(subgoal_tac "\<forall>a \<in> supp p. a \<sharp> x")
+apply(auto simp add: fresh_star_def fresh_def supp_perm)[1]
+apply(auto simp add: fresh_star_def fresh_def)
+done
+
+lemma at_set_avoiding2_atom:
+ assumes "finite (supp c)" "finite (supp x)"
+ and b: "a \<sharp> x"
+ shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p"
+proof -
+ have a: "{a} \<sharp>* x" unfolding fresh_star_def by (simp add: b)
+ obtain p where p1: "(p \<bullet> {a}) \<sharp>* c" and p2: "supp x \<sharp>* p"
+ using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast
+ have c: "(p \<bullet> a) \<sharp> c" using p1
+ unfolding fresh_star_def Ball_def
+ by(erule_tac x="p \<bullet> a" in allE) (simp add: permute_set_eq)
+ hence "p \<bullet> a \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast
+ then show "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" by blast
+qed
+
+
+section {* Concrete Atoms Types *}
text {*
Class @{text at_base} allows types containing multiple sorts of atoms.
@@ -1271,7 +1568,6 @@
section {* Infrastructure for concrete atom types *}
-
section {* A swapping operation for concrete atoms *}
definition
@@ -1439,6 +1735,175 @@
(@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}
+
+section {* The freshness lemma according to Andy Pitts *}
+
+lemma freshness_lemma:
+ fixes h :: "'a::at \<Rightarrow> 'b::pt"
+ assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+ shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+proof -
+ from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b"
+ by (auto simp add: fresh_Pair)
+ show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+ proof (intro exI allI impI)
+ fix a :: 'a
+ assume a3: "atom a \<sharp> h"
+ show "h a = h b"
+ proof (cases "a = b")
+ assume "a = b"
+ thus "h a = h b" by simp
+ next
+ assume "a \<noteq> b"
+ hence "atom a \<sharp> b" by (simp add: fresh_at_base)
+ with a3 have "atom a \<sharp> h b"
+ by (rule fresh_fun_app)
+ with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)"
+ by (rule swap_fresh_fresh)
+ from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h"
+ by (rule swap_fresh_fresh)
+ from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp
+ also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)"
+ by (rule permute_fun_app_eq)
+ also have "\<dots> = h a"
+ using d2 by simp
+ finally show "h a = h b" by simp
+ qed
+ qed
+qed
+
+lemma freshness_lemma_unique:
+ fixes h :: "'a::at \<Rightarrow> 'b::pt"
+ assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+ shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+proof (rule ex_ex1I)
+ from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+ by (rule freshness_lemma)
+next
+ fix x y
+ assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+ assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y"
+ from a x y show "x = y"
+ by (auto simp add: fresh_Pair)
+qed
+
+text {* packaging the freshness lemma into a function *}
+
+definition
+ fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
+where
+ "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
+
+lemma fresh_fun_apply:
+ fixes h :: "'a::at \<Rightarrow> 'b::pt"
+ assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+ assumes b: "atom a \<sharp> h"
+ shows "fresh_fun h = h a"
+unfolding fresh_fun_def
+proof (rule the_equality)
+ show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
+ proof (intro strip)
+ fix a':: 'a
+ assume c: "atom a' \<sharp> h"
+ from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma)
+ with b c show "h a' = h a" by auto
+ qed
+next
+ fix fr :: 'b
+ assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr"
+ with b show "fr = h a" by auto
+qed
+
+lemma fresh_fun_apply':
+ fixes h :: "'a::at \<Rightarrow> 'b::pt"
+ assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
+ shows "fresh_fun h = h a"
+ apply (rule fresh_fun_apply)
+ apply (auto simp add: fresh_Pair intro: a)
+ done
+
+lemma fresh_fun_eqvt:
+ fixes h :: "'a::at \<Rightarrow> 'b::pt"
+ assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+ shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
+ using a
+ apply (clarsimp simp add: fresh_Pair)
+ apply (subst fresh_fun_apply', assumption+)
+ apply (drule fresh_permute_iff [where p=p, THEN iffD2])
+ apply (drule fresh_permute_iff [where p=p, THEN iffD2])
+ apply (simp add: atom_eqvt permute_fun_app_eq [where f=h])
+ apply (erule (1) fresh_fun_apply' [symmetric])
+ done
+
+lemma fresh_fun_supports:
+ fixes h :: "'a::at \<Rightarrow> 'b::pt"
+ assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+ shows "(supp h) supports (fresh_fun h)"
+ apply (simp add: supports_def fresh_def [symmetric])
+ apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
+ done
+
+notation fresh_fun (binder "FRESH " 10)
+
+lemma FRESH_f_iff:
+ fixes P :: "'a::at \<Rightarrow> 'b::pure"
+ fixes f :: "'b \<Rightarrow> 'c::pure"
+ assumes P: "finite (supp P)"
+ shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
+proof -
+ obtain a::'a where "atom a \<notin> supp P"
+ using P by (rule obtain_at_base)
+ hence "atom a \<sharp> P"
+ by (simp add: fresh_def)
+ show "(FRESH x. f (P x)) = f (FRESH x. P x)"
+ apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
+ apply (cut_tac `atom a \<sharp> P`)
+ apply (simp add: fresh_conv_MOST)
+ apply (elim MOST_rev_mp, rule MOST_I, clarify)
+ apply (simp add: permute_fun_def permute_pure expand_fun_eq)
+ apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
+ apply (rule refl)
+ done
+qed
+
+lemma FRESH_binop_iff:
+ fixes P :: "'a::at \<Rightarrow> 'b::pure"
+ fixes Q :: "'a::at \<Rightarrow> 'c::pure"
+ fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure"
+ assumes P: "finite (supp P)"
+ and Q: "finite (supp Q)"
+ shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
+proof -
+ from assms have "finite (supp P \<union> supp Q)" by simp
+ then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)"
+ by (rule obtain_at_base)
+ hence "atom a \<sharp> P" and "atom a \<sharp> Q"
+ by (simp_all add: fresh_def)
+ show ?thesis
+ apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
+ apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
+ apply (simp add: fresh_conv_MOST)
+ apply (elim MOST_rev_mp, rule MOST_I, clarify)
+ apply (simp add: permute_fun_def permute_pure expand_fun_eq)
+ apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
+ apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
+ apply (rule refl)
+ done
+qed
+
+lemma FRESH_conj_iff:
+ fixes P Q :: "'a::at \<Rightarrow> bool"
+ assumes P: "finite (supp P)" and Q: "finite (supp Q)"
+ shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)"
+using P Q by (rule FRESH_binop_iff)
+
+lemma FRESH_disj_iff:
+ fixes P Q :: "'a::at \<Rightarrow> bool"
+ assumes P: "finite (supp P)" and Q: "finite (supp Q)"
+ shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)"
+using P Q by (rule FRESH_binop_iff)
+
+
section {* Library functions for the nominal infrastructure *}
use "nominal_library.ML"