Nominal-General/Nominal2_Base.thy
changeset 2470 bdb1eab47161
parent 2467 67b3933c3190
child 2475 486d4647bb37
--- a/Nominal-General/Nominal2_Base.thy	Sat Sep 04 06:48:14 2010 +0800
+++ b/Nominal-General/Nominal2_Base.thy	Sat Sep 04 07:28:35 2010 +0800
@@ -444,6 +444,11 @@
   unfolding permute_fun_def permute_bool_def
   by (auto, rule_tac x="p \<bullet> x" in exI, simp)
 
+lemma all_eqvt:
+  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
+  unfolding permute_fun_def permute_bool_def
+  by (auto, drule_tac x="p \<bullet> x" in spec, simp)
+
 lemma permute_boolE:
   fixes P::"bool"
   shows "p \<bullet> P \<Longrightarrow> P"
@@ -488,6 +493,21 @@
   unfolding permute_set_eq
   using a by (auto simp add: swap_atom)
 
+lemma mem_permute_iff:
+  shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
+  unfolding mem_def permute_fun_def permute_bool_def
+  by simp
+
+lemma mem_eqvt:
+  shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
+  unfolding mem_def
+  by (simp add: permute_fun_app_eq)
+
+lemma insert_eqvt:
+  shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
+  unfolding permute_set_eq_image image_insert ..
+
+
 subsection {* Permutations for units *}
 
 instantiation unit :: pt
@@ -996,6 +1016,16 @@
   shows "a \<sharp> (x, y) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> y"
   by (simp add: fresh_def supp_Pair)
 
+lemma supp_Unit:
+  shows "supp () = {}"
+  by (simp add: supp_def)
+
+lemma fresh_Unit:
+  shows "a \<sharp> ()"
+  by (simp add: fresh_def supp_Unit)
+
+
+
 instance prod :: (fs, fs) fs
 apply default
 apply (induct_tac x)
@@ -1075,7 +1105,7 @@
 done
 
 
-section {* Support and freshness for applications *}
+section {* Support and Freshness for Applications *}
 
 lemma fresh_conv_MOST: 
   shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)"
@@ -1103,7 +1133,7 @@
   unfolding fresh_def
   by auto
 
-text {* support of equivariant functions *}
+text {* Support of Equivariant Functions *}
 
 lemma supp_fun_eqvt:
   assumes a: "\<And>p. p \<bullet> f = f"
@@ -1194,7 +1224,274 @@
   by (simp add: supp_of_fin_sets)
 
 
-section {* Concrete atoms types *}
+section {* Fresh-Star *}
+
+
+text {* The fresh-star generalisation of fresh is used in strong
+  induction principles. *}
+
+definition 
+  fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80)
+where 
+  "as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x"
+
+lemma fresh_star_prod:
+  fixes as::"atom set"
+  shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)" 
+  by (auto simp add: fresh_star_def fresh_Pair)
+
+lemma fresh_star_union:
+  shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)"
+  by (auto simp add: fresh_star_def)
+
+lemma fresh_star_insert:
+  shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)"
+  by (auto simp add: fresh_star_def)
+
+lemma fresh_star_Un_elim:
+  "((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)"
+  unfolding fresh_star_def
+  apply(rule)
+  apply(erule meta_mp)
+  apply(auto)
+  done
+
+lemma fresh_star_insert_elim:
+  "(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)"
+  unfolding fresh_star_def
+  by rule (simp_all add: fresh_star_def)
+
+lemma fresh_star_empty_elim:
+  "({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C"
+  by (simp add: fresh_star_def)
+
+lemma fresh_star_unit_elim: 
+  shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C"
+  by (simp add: fresh_star_def fresh_Unit) 
+
+lemma fresh_star_prod_elim: 
+  shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
+  by (rule, simp_all add: fresh_star_prod)
+
+lemma fresh_star_zero:
+  shows "as \<sharp>* (0::perm)"
+  unfolding fresh_star_def
+  by (simp add: fresh_zero_perm)
+
+lemma fresh_star_plus:
+  fixes p q::perm
+  shows "\<lbrakk>a \<sharp>* p;  a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
+  unfolding fresh_star_def
+  by (simp add: fresh_plus_perm)
+
+lemma fresh_star_permute_iff:
+  shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
+  unfolding fresh_star_def
+  by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)
+
+lemma fresh_star_eqvt:
+  shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)"
+unfolding fresh_star_def
+unfolding Ball_def
+apply(simp add: all_eqvt)
+apply(subst permute_fun_def)
+apply(simp add: imp_eqvt fresh_eqvt mem_eqvt)
+done
+
+
+section {* Induction principle for permutations *}
+
+
+lemma perm_struct_induct[consumes 1, case_names zero swap]:
+  assumes S: "supp p \<subseteq> S"
+  and zero: "P 0"
+  and swap: "\<And>p a b. \<lbrakk>P p; supp p \<subseteq> S; a \<in> S; b \<in> S; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
+  shows "P p"
+proof -
+  have "finite (supp p)" by (simp add: finite_supp)
+  then show "P p" using S
+  proof(induct A\<equiv>"supp p" arbitrary: p rule: finite_psubset_induct)
+    case (psubset p)
+    then have ih: "\<And>q. supp q \<subset> supp p \<Longrightarrow> P q" by auto
+    have as: "supp p \<subseteq> S" by fact
+    { assume "supp p = {}"
+      then have "p = 0" by (simp add: supp_perm expand_perm_eq)
+      then have "P p" using zero by simp
+    }
+    moreover
+    { assume "supp p \<noteq> {}"
+      then obtain a where a0: "a \<in> supp p" by blast
+      then have a1: "p \<bullet> a \<in> S" "a \<in> S" "sort_of (p \<bullet> a) = sort_of a" "p \<bullet> a \<noteq> a"
+        using as by (auto simp add: supp_atom supp_perm swap_atom)
+      let ?q = "(p \<bullet> a \<rightleftharpoons> a) + p"
+      have a2: "supp ?q \<subseteq> supp p" unfolding supp_perm by (auto simp add: swap_atom)
+      moreover
+      have "a \<notin> supp ?q" by (simp add: supp_perm)
+      then have "supp ?q \<noteq> supp p" using a0 by auto
+      ultimately have "supp ?q \<subset> supp p" using a2 by auto
+      then have "P ?q" using ih by simp
+      moreover
+      have "supp ?q \<subseteq> S" using as a2 by simp
+      ultimately  have "P ((p \<bullet> a \<rightleftharpoons> a) + ?q)" using as a1 swap by simp 
+      moreover 
+      have "p = (p \<bullet> a \<rightleftharpoons> a) + ?q" by (simp add: expand_perm_eq)
+      ultimately have "P p" by simp
+    }
+    ultimately show "P p" by blast
+  qed
+qed
+
+lemma perm_simple_struct_induct[case_names zero swap]:
+  assumes zero: "P 0"
+  and     swap: "\<And>p a b. \<lbrakk>P p; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
+  shows "P p"
+by (rule_tac S="supp p" in perm_struct_induct)
+   (auto intro: zero swap)
+
+lemma perm_subset_induct[consumes 1, case_names zero swap plus]:
+  assumes S: "supp p \<subseteq> S"
+  assumes zero: "P 0"
+  assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b; a \<in> S; b \<in> S\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
+  assumes plus: "\<And>p1 p2. \<lbrakk>P p1; P p2; supp p1 \<subseteq> S; supp p2 \<subseteq> S\<rbrakk> \<Longrightarrow> P (p1 + p2)"
+  shows "P p"
+using S
+by (induct p rule: perm_struct_induct)
+   (auto intro: zero plus swap simp add: supp_swap)
+
+lemma supp_perm_eq:
+  assumes "(supp x) \<sharp>* p"
+  shows "p \<bullet> x = x"
+proof -
+  from assms have "supp p \<subseteq> {a. a \<sharp> x}"
+    unfolding supp_perm fresh_star_def fresh_def by auto
+  then show "p \<bullet> x = x"
+  proof (induct p rule: perm_struct_induct)
+    case zero
+    show "0 \<bullet> x = x" by simp
+  next
+    case (swap p a b)
+    then have "a \<sharp> x" "b \<sharp> x" "p \<bullet> x = x" by simp_all
+    then show "((a \<rightleftharpoons> b) + p) \<bullet> x = x" by (simp add: swap_fresh_fresh)
+  qed
+qed
+
+lemma supp_perm_eq_test:
+  assumes "(supp x) \<sharp>* p"
+  shows "p \<bullet> x = x"
+proof -
+  from assms have "supp p \<subseteq> {a. a \<sharp> x}"
+    unfolding supp_perm fresh_star_def fresh_def by auto
+  then show "p \<bullet> x = x"
+  proof (induct p rule: perm_subset_induct)
+    case zero
+    show "0 \<bullet> x = x" by simp
+  next
+    case (swap a b)
+    then have "a \<sharp> x" "b \<sharp> x" by simp_all
+    then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh)
+  next
+    case (plus p1 p2)
+    have "p1 \<bullet> x = x" "p2 \<bullet> x = x" by fact+
+    then show "(p1 + p2) \<bullet> x = x" by simp
+  qed
+qed
+
+
+section {* Avoiding of atom sets *}
+
+text {* 
+  For every set of atoms, there is another set of atoms
+  avoiding a finitely supported c and there is a permutation
+  which 'translates' between both sets.
+*}
+
+lemma at_set_avoiding_aux:
+  fixes Xs::"atom set"
+  and   As::"atom set"
+  assumes b: "Xs \<subseteq> As"
+  and     c: "finite As"
+  shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
+proof -
+  from b c have "finite Xs" by (rule finite_subset)
+  then show ?thesis using b
+  proof (induct rule: finite_subset_induct)
+    case empty
+    have "0 \<bullet> {} \<inter> As = {}" by simp
+    moreover
+    have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm)
+    ultimately show ?case by blast
+  next
+    case (insert x Xs)
+    then obtain p where
+      p1: "(p \<bullet> Xs) \<inter> As = {}" and 
+      p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast
+    from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast
+    with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast
+    hence px: "p \<bullet> x = x" unfolding supp_perm by simp
+    have "finite (As \<union> p \<bullet> Xs)"
+      using `finite As` `finite Xs`
+      by (simp add: permute_set_eq_image)
+    then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x"
+      by (rule obtain_atom)
+    hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x"
+      by simp_all
+    let ?q = "(x \<rightleftharpoons> y) + p"
+    have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)"
+      unfolding insert_eqvt
+      using `p \<bullet> x = x` `sort_of y = sort_of x`
+      using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs`
+      by (simp add: swap_atom swap_set_not_in)
+    have "?q \<bullet> insert x Xs \<inter> As = {}"
+      using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}`
+      unfolding q by simp
+    moreover
+    have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs"
+      using p2 unfolding q
+      by (intro subset_trans [OF supp_plus_perm])
+         (auto simp add: supp_swap)
+    ultimately show ?case by blast
+  qed
+qed
+
+lemma at_set_avoiding:
+  assumes a: "finite Xs"
+  and     b: "finite (supp c)"
+  obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
+  using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"]
+  unfolding fresh_star_def fresh_def by blast
+
+lemma at_set_avoiding2:
+  assumes "finite xs"
+  and     "finite (supp c)" "finite (supp x)"
+  and     "xs \<sharp>* x"
+  shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
+using assms
+apply(erule_tac c="(c, x)" in at_set_avoiding)
+apply(simp add: supp_Pair)
+apply(rule_tac x="p" in exI)
+apply(simp add: fresh_star_prod)
+apply(subgoal_tac "\<forall>a \<in> supp p. a \<sharp> x")
+apply(auto simp add: fresh_star_def fresh_def supp_perm)[1]
+apply(auto simp add: fresh_star_def fresh_def)
+done
+
+lemma at_set_avoiding2_atom:
+  assumes "finite (supp c)" "finite (supp x)"
+  and     b: "a \<sharp> x"
+  shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p"
+proof -
+  have a: "{a} \<sharp>* x" unfolding fresh_star_def by (simp add: b)
+  obtain p where p1: "(p \<bullet> {a}) \<sharp>* c" and p2: "supp x \<sharp>* p"
+    using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast
+  have c: "(p \<bullet> a) \<sharp> c" using p1
+    unfolding fresh_star_def Ball_def 
+    by(erule_tac x="p \<bullet> a" in allE) (simp add: permute_set_eq)
+  hence "p \<bullet> a \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast
+  then show "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" by blast
+qed
+
+
+section {* Concrete Atoms Types *}
 
 text {*
   Class @{text at_base} allows types containing multiple sorts of atoms.
@@ -1271,7 +1568,6 @@
 
 section {* Infrastructure for concrete atom types *}
 
-
 section {* A swapping operation for concrete atoms *}
   
 definition
@@ -1439,6 +1735,175 @@
   (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}
 
 
+
+section {* The freshness lemma according to Andy Pitts *}
+
+lemma freshness_lemma:
+  fixes h :: "'a::at \<Rightarrow> 'b::pt"
+  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+  shows  "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+proof -
+  from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b"
+    by (auto simp add: fresh_Pair)
+  show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+  proof (intro exI allI impI)
+    fix a :: 'a
+    assume a3: "atom a \<sharp> h"
+    show "h a = h b"
+    proof (cases "a = b")
+      assume "a = b"
+      thus "h a = h b" by simp
+    next
+      assume "a \<noteq> b"
+      hence "atom a \<sharp> b" by (simp add: fresh_at_base)
+      with a3 have "atom a \<sharp> h b" 
+        by (rule fresh_fun_app)
+      with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)"
+        by (rule swap_fresh_fresh)
+      from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h"
+        by (rule swap_fresh_fresh)
+      from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp
+      also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)"
+        by (rule permute_fun_app_eq)
+      also have "\<dots> = h a"
+        using d2 by simp
+      finally show "h a = h b"  by simp
+    qed
+  qed
+qed
+
+lemma freshness_lemma_unique:
+  fixes h :: "'a::at \<Rightarrow> 'b::pt"
+  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+  shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+proof (rule ex_ex1I)
+  from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+    by (rule freshness_lemma)
+next
+  fix x y
+  assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
+  assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y"
+  from a x y show "x = y"
+    by (auto simp add: fresh_Pair)
+qed
+
+text {* packaging the freshness lemma into a function *}
+
+definition
+  fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
+where
+  "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
+
+lemma fresh_fun_apply:
+  fixes h :: "'a::at \<Rightarrow> 'b::pt"
+  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+  assumes b: "atom a \<sharp> h"
+  shows "fresh_fun h = h a"
+unfolding fresh_fun_def
+proof (rule the_equality)
+  show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
+  proof (intro strip)
+    fix a':: 'a
+    assume c: "atom a' \<sharp> h"
+    from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma)
+    with b c show "h a' = h a" by auto
+  qed
+next
+  fix fr :: 'b
+  assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr"
+  with b show "fr = h a" by auto
+qed
+
+lemma fresh_fun_apply':
+  fixes h :: "'a::at \<Rightarrow> 'b::pt"
+  assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
+  shows "fresh_fun h = h a"
+  apply (rule fresh_fun_apply)
+  apply (auto simp add: fresh_Pair intro: a)
+  done
+
+lemma fresh_fun_eqvt:
+  fixes h :: "'a::at \<Rightarrow> 'b::pt"
+  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+  shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
+  using a
+  apply (clarsimp simp add: fresh_Pair)
+  apply (subst fresh_fun_apply', assumption+)
+  apply (drule fresh_permute_iff [where p=p, THEN iffD2])
+  apply (drule fresh_permute_iff [where p=p, THEN iffD2])
+  apply (simp add: atom_eqvt permute_fun_app_eq [where f=h])
+  apply (erule (1) fresh_fun_apply' [symmetric])
+  done
+
+lemma fresh_fun_supports:
+  fixes h :: "'a::at \<Rightarrow> 'b::pt"
+  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
+  shows "(supp h) supports (fresh_fun h)"
+  apply (simp add: supports_def fresh_def [symmetric])
+  apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
+  done
+
+notation fresh_fun (binder "FRESH " 10)
+
+lemma FRESH_f_iff:
+  fixes P :: "'a::at \<Rightarrow> 'b::pure"
+  fixes f :: "'b \<Rightarrow> 'c::pure"
+  assumes P: "finite (supp P)"
+  shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
+proof -
+  obtain a::'a where "atom a \<notin> supp P"
+    using P by (rule obtain_at_base)
+  hence "atom a \<sharp> P"
+    by (simp add: fresh_def)
+  show "(FRESH x. f (P x)) = f (FRESH x. P x)"
+    apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
+    apply (cut_tac `atom a \<sharp> P`)
+    apply (simp add: fresh_conv_MOST)
+    apply (elim MOST_rev_mp, rule MOST_I, clarify)
+    apply (simp add: permute_fun_def permute_pure expand_fun_eq)
+    apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
+    apply (rule refl)
+    done
+qed
+
+lemma FRESH_binop_iff:
+  fixes P :: "'a::at \<Rightarrow> 'b::pure"
+  fixes Q :: "'a::at \<Rightarrow> 'c::pure"
+  fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure"
+  assumes P: "finite (supp P)" 
+  and     Q: "finite (supp Q)"
+  shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
+proof -
+  from assms have "finite (supp P \<union> supp Q)" by simp
+  then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)"
+    by (rule obtain_at_base)
+  hence "atom a \<sharp> P" and "atom a \<sharp> Q"
+    by (simp_all add: fresh_def)
+  show ?thesis
+    apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
+    apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
+    apply (simp add: fresh_conv_MOST)
+    apply (elim MOST_rev_mp, rule MOST_I, clarify)
+    apply (simp add: permute_fun_def permute_pure expand_fun_eq)
+    apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
+    apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
+    apply (rule refl)
+    done
+qed
+
+lemma FRESH_conj_iff:
+  fixes P Q :: "'a::at \<Rightarrow> bool"
+  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
+  shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)"
+using P Q by (rule FRESH_binop_iff)
+
+lemma FRESH_disj_iff:
+  fixes P Q :: "'a::at \<Rightarrow> bool"
+  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
+  shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)"
+using P Q by (rule FRESH_binop_iff)
+
+
 section {* Library functions for the nominal infrastructure *}
 
 use "nominal_library.ML"