--- a/Slides/Slides9.thy Sat May 12 21:05:59 2012 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1363 +0,0 @@
-(*<*)
-theory Slides9
-imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
-begin
-
-notation (latex output)
- set ("_") and
- Cons ("_::/_" [66,65] 65)
-
-(*>*)
-
-
-text_raw {*
- %% shallow, deep, and recursive binders
- %%
- %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
- %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011}
- \renewcommand{\slidecaption}{Leicester, 23.~November 2011}
- \newcommand{\soutt}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt]
- \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1>[t]
- \frametitle{%
- \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
- \\
- \LARGE General Binding Structures\\[-1mm]
- \LARGE in Nominal Isabelle 2\\
- \end{tabular}}
- \begin{center}
- Christian Urban
- \end{center}
- \begin{center}
- joint work with {\bf Cezary Kaliszyk}\\[0mm]
- \end{center}
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1>
- \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
- \mbox{}\\[-6mm]
-
- \begin{itemize}
- \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip
-
- \begin{center}
- Lam [a].(Var a)
- \end{center}\bigskip
-
- \item<2-> but representing
-
- \begin{center}
- $\forall\{a_1,\ldots,a_n\}.\; T$
- \end{center}\medskip
-
- with single binders and reasoning about it is a \alert{\bf major} pain;
- take my word for it!
- \end{itemize}
-
- \only<1>{
- \begin{textblock}{6}(1.5,11)
- \small
- for example\\
- \begin{tabular}{l@ {\hspace{2mm}}l}
- & a $\fresh$ Lam [a]. t\\
- & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\
- & Barendregt-style reasoning about bound variables\\
- & (variable convention can lead to faulty reasoning)
- \end{tabular}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{}
-
- \begin{tabular}{c@ {\hspace{2mm}}c}
- \\[6mm]
- \begin{tabular}{c}
- \includegraphics[scale=0.11]{harper.jpg}\\[-2mm]
- {\footnotesize Bob Harper}\\[-2.5mm]
- {\footnotesize (CMU)}
- \end{tabular}
- \begin{tabular}{c}
- \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm]
- {\footnotesize Frank Pfenning}\\[-2.5mm]
- {\footnotesize (CMU)}
- \end{tabular} &
-
- \begin{tabular}{p{6cm}}
- \raggedright
- \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005,
- $\sim$31pp}
- \end{tabular}\\
-
- \pause
- \\[0mm]
-
- \begin{tabular}{c}
- \includegraphics[scale=0.36]{appel.jpg}\\[-2mm]
- {\footnotesize Andrew Appel}\\[-2.5mm]
- {\footnotesize (Princeton)}
- \end{tabular} &
-
- \begin{tabular}{p{6cm}}
- \raggedright
- \color{gray}{relied on their proof in a\\ {\bf security} critical application}
- \end{tabular}
- \end{tabular}\medskip\pause
-
- \small
- \begin{minipage}{1.0\textwidth}
- (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination
- examined by Henk Barendregt and Andy Pitts.)
- \end{minipage}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
-
- \begin{itemize}
- \item<1-> but representing
-
- \begin{center}
- $\forall\{a_1,\ldots,a_n\}.\; T$
- \end{center}\medskip
-
- with single binders and reasoning about it was a \alert{\bf major} pain;
- take my word for it!
- \end{itemize}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-6>
- \frametitle{New Types in HOL}
-
- \begin{center}
- \begin{tikzpicture}[scale=1.5]
- %%%\draw[step=2mm] (-4,-1) grid (4,1);
-
- \onslide<2-4,6>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
- \onslide<1-4,6>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
- \onslide<3-5,6>{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
-
- \onslide<3-4,6>{\draw (-2.0, 0.845) -- (0.7,0.845);}
- \onslide<3-4,6>{\draw (-2.0,-0.045) -- (0.7,-0.045);}
-
- \onslide<4-4,6>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
- \onslide<4-5,6>{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
- \onslide<1-4,6>{\draw (1.8, 0.48) node[right=-0.1mm]
- {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<4-4,6>{\alert{(sets of raw terms)}}\end{tabular}};}
- \onslide<2-4,6>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
- \onslide<3-5,6>{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
-
- \onslide<3-4,6>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
- \onslide<3-4,6>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}
-
- \onslide<6>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
- \end{tikzpicture}
- \end{center}
-
- \begin{center}
- \textcolor{red}{\large\bf\onslide<6>{define $\alpha$-equivalence}}
- \end{center}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-4>
- \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{itemize}
- \item binding sets of names has some interesting properties:\medskip
-
- \begin{center}
- \begin{tabular}{l}
- \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$}
- \bigskip\smallskip\\
-
- \onslide<2->{%
- \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$}
- }\bigskip\smallskip\\
-
- \onslide<3->{%
- \textcolor{blue}{$\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$}
- }\medskip\\
- \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type}
- \end{tabular}
- \end{center}
- \end{itemize}
-
- \begin{textblock}{8}(2,14.5)
- \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct
- \end{textblock}
-
- \only<4>{
- \begin{textblock}{6}(2.5,4)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\normalsize\color{darkgray}
- \begin{minipage}{8cm}\raggedright
- For type-schemes the order of bound names does not matter, and
- $\alpha$-equivalence is preserved under \alert{vacuous} binders.
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-3>
- \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{itemize}
- \item alpha-equivalence being preserved under vacuous binders is \underline{not} always
- wanted:\bigskip\bigskip\normalsize
-
- \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l}
- $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\
- \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}}
- \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and}
- \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$}
- \end{tabular}}
-
-
- \end{itemize}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1>
- \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{itemize}
- \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip
-
- \begin{center}
- \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l}
- $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\
- $\;\;\;\not\approx_\alpha
- \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$
- \end{tabular}}
- \end{center}
-
-
- \end{itemize}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-2>
- \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{itemize}
- \item the order does not matter and alpha-equivelence is preserved under
- vacuous binders \textcolor{gray}{(restriction)}\medskip
-
- \item the order does not matter, but the cardinality of the binders
- must be the same \textcolor{gray}{(abstraction)}\medskip
-
- \item the order does matter \textcolor{gray}{(iterated single binders)}
- \end{itemize}
-
- \onslide<2->{
- \begin{center}
- \isacommand{bind (set+)}\hspace{6mm}
- \isacommand{bind (set)}\hspace{6mm}
- \isacommand{bind}
- \end{center}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-3>
- \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}}
- \mbox{}\\[-6mm]
-
- \mbox{}\hspace{10mm}
- \begin{tabular}{ll}
- \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
- \hspace{5mm}\phantom{$|$} Var name\\
- \hspace{5mm}$|$ App trm trm\\
- \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm
- & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\
- \hspace{5mm}$|$ Let \only<2->{as::}assns \only<2->{t::}trm
- & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\
- \multicolumn{2}{l}{\isacommand{and} assns $=$}\\
- \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
- \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\
- \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\
- \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\
- \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\
- \end{tabular}
-
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-2,4-8>
- \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{itemize}
- \item lets first look at pairs\bigskip\medskip
-
- \textcolor{blue}{\begin{tabular}{@ {\hspace{1cm}}l}
- $(as, x) \onslide<2->{\approx\!}\makebox[5mm][l]{\only<2-6>{${}_{\text{set}}$}%
- \only<7>{${}_{\text{\alert{list}}}$}%
- \only<8>{${}_{\text{\alert{set+}}}$}}%
- \,\onslide<2->{(bs,y)}$
- \end{tabular}}\bigskip
- \end{itemize}
-
- \only<1>{
- \begin{textblock}{8}(3,8.5)
- \begin{tabular}{l@ {\hspace{2mm}}p{8cm}}
- & \textcolor{blue}{$as$} is a set of names\ldots the binders\\
- & \textcolor{blue}{$x$} is the body (might be a tuple)\\
- & \textcolor{blue}{$\approx_{\text{set}}$} is where the cardinality
- of the binders has to be the same\\
- \end{tabular}
- \end{textblock}}
-
- \only<4->{
- \begin{textblock}{12}(5,8)
- \textcolor{blue}{
- \begin{tabular}{ll@ {\hspace{1mm}}l}
- $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm]
- & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm]
- & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x) = y$}\\[1mm]
- & \only<6-7>{$\;\;\;\wedge$}\only<8>{\textcolor{gray}{\xout{$\;\;\;\wedge$}}} &
- \only<6-7>{$\pi \act as = bs$}\only<8>{\textcolor{gray}{\xout{$\pi \act as = bs$}}}\\
- \end{tabular}}
- \end{textblock}}
-
- \only<7>{
- \begin{textblock}{7}(3,13.8)
- \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names
- \end{textblock}}
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-3>
- \frametitle{\begin{tabular}{c}Examples\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{itemize}
- \item lets look at type-schemes:\medskip\medskip
-
- \begin{center}
- \textcolor{blue}{$(as, x) \approx\!\makebox[5mm][l]{${}_{\text{set}}$} (bs, y)$}
- \end{center}\medskip
-
- \onslide<2->{
- \begin{center}
- \textcolor{blue}{
- \begin{tabular}{l}
- $\text{fv}(x) = \{x\}$\\[1mm]
- $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\
- \end{tabular}}
- \end{center}}
- \end{itemize}
-
-
- \only<3->{
- \begin{textblock}{4}(0.3,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{set+:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- \\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \only<3->{
- \begin{textblock}{4}(5.2,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{set:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- $\wedge$ & $\pi \cdot as = bs$\\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \only<3->{
- \begin{textblock}{4}(10.2,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{list:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- $\wedge$ & $\pi \cdot as = bs$\\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-2>
- \frametitle{\begin{tabular}{c}Examples\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{center}
- \textcolor{blue}{
- \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$}
- \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}}
- \end{center}
-
- \begin{itemize}
- \item \textcolor{blue}{$\approx_{\text{set+}}$, $\approx_{\text{set}}$%
- \only<2>{, \alert{$\not\approx_{\text{list}}$}}}
- \end{itemize}
-
-
- \only<1->{
- \begin{textblock}{4}(0.3,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{set+:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- \\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \only<1->{
- \begin{textblock}{4}(5.2,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{set:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- $\wedge$ & $\pi \cdot as = bs$\\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \only<1->{
- \begin{textblock}{4}(10.2,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{list:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- $\wedge$ & $\pi \cdot as = bs$\\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-2>
- \frametitle{\begin{tabular}{c}Examples\end{tabular}}
- \mbox{}\\[-3mm]
-
- \begin{center}
- \textcolor{blue}{\only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}}
- \end{center}
-
- \begin{itemize}
- \item \textcolor{blue}{$\approx_{\text{set+}}$, $\not\approx_{\text{set}}$,
- $\not\approx_{\text{list}}$}
- \end{itemize}
-
-
- \only<1->{
- \begin{textblock}{4}(0.3,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{set+:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- \\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \only<1->{
- \begin{textblock}{4}(5.2,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{set:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- $\wedge$ & $\pi \cdot as = bs$\\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
- \only<1->{
- \begin{textblock}{4}(10.2,12)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\tiny\color{darkgray}
- \begin{minipage}{3.4cm}\raggedright
- \begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{list:}\\
- $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
- $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
- $\wedge$ & $\pi \cdot x = y$\\
- $\wedge$ & $\pi \cdot as = bs$\\
- \end{tabular}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
-
- \only<2>{
- \begin{textblock}{6}(2.5,4)
- \begin{tikzpicture}
- \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
- {\normalsize
- \begin{minipage}{8cm}\raggedright
- \begin{itemize}
- \item \color{darkgray}$\alpha$-equivalences coincide when a single name is
- abstracted
- \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$
- \end{itemize}
- \end{minipage}};
- \end{tikzpicture}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1->
- \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}}
- \mbox{}\\[-6mm]
-
- \mbox{}\hspace{10mm}
- \begin{tabular}{ll}
- \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
- \hspace{5mm}\phantom{$|$} Var name\\
- \hspace{5mm}$|$ App trm trm\\
- \hspace{5mm}$|$ Lam x::name t::trm
- & \isacommand{bind} x \isacommand{in} t\\
- \hspace{5mm}$|$ Let as::assns t::trm
- & \isacommand{bind} bn(as) \isacommand{in} t\\
- \multicolumn{2}{l}{\isacommand{and} assns $=$}\\
- \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
- \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\
- \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\
- \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
- \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
- \end{tabular}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1->[t]
- \frametitle{\begin{tabular}{c}Binder Clauses\end{tabular}}
-
- \begin{itemize}
- \item We need to have a `clear scope' for a bound variable, and bound
- variables should not be free and bound at the same time.\bigskip
- \end{itemize}
-
- \begin{center}
- \only<1>{
- \begin{tabular}{@ {\hspace{-5mm}}l}
- \alert{\bf shallow binders}\\
- \hspace{4mm}Lam x::name t::trm\hspace{4mm} \isacommand{bind} x \isacommand{in} t\\
- \hspace{4mm}All xs::name set T::ty\hspace{4mm} \isacommand{bind} xs \isacommand{in} T\\
- \hspace{4mm}Foo x::name t$_1$::trm t$_2$::trm\hspace{4mm}
- \isacommand{bind} x \isacommand{in} t$_1$, \isacommand{bind} x \isacommand{in} t$_2$\\
- \hspace{4mm}Bar x::name t$_1$::trm t$_2$::trm\hspace{4mm}
- \isacommand{bind} x \isacommand{in} t$_1$ t$_2$\\
- \end{tabular}}
- \only<2>{
- \begin{tabular}{@ {\hspace{-5mm}}l}
- \alert{\bf deep binders} \\
- \hspace{4mm}Let as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t\\
- \hspace{4mm}Foo as::assns t$_1$::trm t$_2$::trm\\
- \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\[4mm]
- \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Bar as::assns t$_1$::trm t$_2$::trm\\
- \hspace{20mm}\isacommand{bind} bn$_1$(as) \isacommand{in} t$_1$, \isacommand{bind} bn$_2$(as) \isacommand{in} t$_2$\\
- \end{tabular}}
- \only<3>{
- \begin{tabular}{@ {\hspace{-5mm}}l}
- {\bf deep \alert{recursive} binders} \\
- \hspace{4mm}Let\_rec as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t as\\[4mm]
-
- \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Foo\_rec as::assns t$_1$::trm t$_2$::trm\hspace{4mm}\\
- \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$ as, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\
-
- \end{tabular}}
- \end{center}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-5>
- \frametitle{\begin{tabular}{c}Our Work\end{tabular}}
- \mbox{}\\[-6mm]
-
- \begin{center}
- \begin{tikzpicture}[scale=1.5]
- %%%\draw[step=2mm] (-4,-1) grid (4,1);
-
- \onslide<1>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
- \onslide<1>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
- \onslide<1->{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
-
- \onslide<1>{\draw (-2.0, 0.845) -- (0.7,0.845);}
- \onslide<1>{\draw (-2.0,-0.045) -- (0.7,-0.045);}
-
- \onslide<1>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
- \onslide<1->{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
- \onslide<1>{\draw (1.8, 0.48) node[right=-0.1mm]
- {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<1>{\alert{(sets of raw terms)}}\end{tabular}};}
- \onslide<1>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
- \onslide<1->{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
-
- \onslide<1>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
- \onslide<1>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}
-
- \onslide<1>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
- \end{tikzpicture}
- \end{center}
-
- \begin{textblock}{9.5}(6,3.5)
- \begin{itemize}
- \item<1-> defined fv and $\alpha$
- \item<2-> built quotient / new type
- \item<3-> derived a reasoning infrastructure ($\fresh$, distinctness, injectivity, cases,\ldots)
- \item<4-> derive a {\bf stronger} cases lemma
- \item<5-> from this, a {\bf stronger} induction principle (Barendregt variable convention built in)\\
- \begin{center}
- \textcolor{blue}{Foo ($\lambda x. \lambda y. t$) ($\lambda u. \lambda v. s$)}
- \end{center}
- \end{itemize}
- \end{textblock}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1->
- \frametitle{\begin{tabular}{c}Part I: Conclusion\end{tabular}}
- \mbox{}\\[-6mm]
-
- \begin{itemize}
- \item the user does not see anything of the raw level\medskip
- \only<1>{\begin{center}
- Lam a (Var a) \alert{$=$} Lam b (Var b)
- \end{center}\bigskip}
-
- \item<2-> \textcolor{blue}{http://isabelle.in.tum.de/nominal/}
- \end{itemize}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1->
- \frametitle{\begin{tabular}{c}Part II: $\alpha\beta$-Equal Terms\end{tabular}}
-
- \begin{itemize}
- \item we have implemented a quotient package for Isabelle;
- \item can now introduce the type of $\alpha\beta$-equal terms (starting
- from $\alpha$-equal terms).
- \item on paper this looks easy\pause\bigskip
- \end{itemize}
-
- \begin{center}
- \begin{tabular}{lll}
- \smath{x \approx_{\alpha\beta} y} & \smath{\;\not\Rightarrow\;} &
- \smath{\text{supp}(x) = \text{supp}(y)}\\
- & \smath{\;\not\Rightarrow\;} &
- \smath{\text{size}(x) = \text{size}(y)}\\
- \end{tabular}
- \end{center}\pause
-
- \small
- \begin{center}
- Andy: \smath{\;\;\text{supp}\mbox{\isasymlbrakk}x\mbox{\isasymrbrakk}_{\approx_{\alpha\beta}} =
- {\text{\large$\bigcap$}} \{ \text{supp}(y) \;|\; y \approx_{\alpha\beta} x\}}
- \end{center}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{}
-
- \begin{center}
- \begin{tabular}{rcl}
- \smath{x\;[y := s]} & \smath{\dn} & \smath{\text{if}\;x=y\;\text{then}\;s\;\text{else}\;x}\bigskip\\
- \smath{t_1 t_2\;[y := s]} & \smath{\dn} & \smath{t_1[y := s]\;t_2[y := s]}\bigskip\\
- \smath{\lambda x.t\;[y := s]} & \smath{\dn} & \smath{\lambda x.\; t[y := s]}\\
- \multicolumn{3}{r}{provided \smath{x \fresh (y, s)}}
- \end{tabular}
- \end{center}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[t]
- \frametitle{\begin{tabular}{c}Part III: Regular Languages\\[-8mm]\end{tabular}}
-
- \begin{center}
- \huge\bf\textcolor{gray}{in Theorem Provers}\\
- \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
- \end{center}
-
- \begin{itemize}
- \item automata @{text "\<Rightarrow>"} graphs, matrices, functions
- \item<2-> combining automata/graphs
-
- \onslide<2->{
- \begin{center}
- \begin{tabular}{ccc}
- \begin{tikzpicture}[scale=1]
- %\draw[step=2mm] (-1,-1) grid (1,1);
-
- \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
- \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
-
- \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
-
- \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
-
- \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
-
- \draw (-0.6,0.0) node {\small$A_1$};
- \draw ( 0.6,0.0) node {\small$A_2$};
- \end{tikzpicture}}
-
- &
-
- \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}
-
- &
-
- \onslide<3->{\begin{tikzpicture}[scale=1]
- %\draw[step=2mm] (-1,-1) grid (1,1);
-
- \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
- \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
-
- \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
-
- \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
-
- \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
- \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
-
- \draw (C) to [red, very thick, bend left=45] (B);
- \draw (D) to [red, very thick, bend right=45] (B);
-
- \draw (-0.6,0.0) node {\small$A_1$};
- \draw ( 0.6,0.0) node {\small$A_2$};
- \end{tikzpicture}}
-
- \end{tabular}
- \end{center}\medskip
-
- \only<4-5>{
- \begin{tabular}{@ {\hspace{-5mm}}l@ {}}
- disjoint union:\\[2mm]
- \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
- \end{tabular}}
- \end{itemize}
-
- \only<5>{
- \begin{textblock}{13.9}(0.7,7.7)
- \begin{block}{}
- \medskip
- \begin{minipage}{14cm}\raggedright
- Problems with definition for regularity:\bigskip\\
- \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
- \end{minipage}
- \end{block}
- \end{textblock}}
- \medskip
-
- \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip}
-
- \only<7->{You have to \alert{rename} states!}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[t]
- \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
- \mbox{}\\[-15mm]\mbox{}
-
- \begin{center}
- \huge\bf\textcolor{gray}{in Theorem Provers}\\
- \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
- \end{center}
-
- \begin{itemize}
- \item Kozen's ``paper'' proof of Myhill-Nerode:\\
- \hspace{2cm}requires absence of \alert{inaccessible states}
- \end{itemize}\bigskip\bigskip
-
- \begin{center}
- \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
- \end{center}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[t]
- \frametitle{}
- \mbox{}\\[25mm]\mbox{}
-
- \begin{textblock}{13.9}(0.7,1.2)
- \begin{block}{}
- \begin{minipage}{13.4cm}\raggedright
- {\bf Definition:}\smallskip\\
-
- A language \smath{A} is \alert{regular}, provided there exists a\\
- \alert{regular expression} that matches all strings of \smath{A}.
- \end{minipage}
- \end{block}
- \end{textblock}\pause
-
- {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause
-
- Infrastructure for free. But do we lose anything?\medskip\pause
-
- \begin{minipage}{1.1\textwidth}
- \begin{itemize}
- \item pumping lemma\pause
- \item closure under complementation\pause
- \item \only<6>{regular expression matching}%
- \only<7->{\soutt{regular expression matching}
- {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}}
- \item<8-> most textbooks are about automata
- \end{itemize}
- \end{minipage}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{\LARGE The Myhill-Nerode Theorem}
-
- \begin{itemize}
- \item provides necessary and suf\!ficient conditions\\ for a language
- being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip
-
- \item key is the equivalence relation:\medskip
- \begin{center}
- \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
- \end{center}
- \end{itemize}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{\LARGE The Myhill-Nerode Theorem}
-
- \begin{center}
- \only<1>{%
- \begin{tikzpicture}[scale=3]
- \draw[very thick] (0.5,0.5) circle (.6cm);
- \end{tikzpicture}}%
- \only<2->{%
- \begin{tikzpicture}[scale=3]
- \draw[very thick] (0.5,0.5) circle (.6cm);
- \clip[draw] (0.5,0.5) circle (.6cm);
- \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
- \end{tikzpicture}}
- \end{center}
-
- \begin{itemize}
- \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
- \end{itemize}
-
- \begin{textblock}{5}(2.1,5.3)
- \begin{tikzpicture}
- \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm]
- {$U\!N\!IV$};
- \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}};
- \end{tikzpicture}
- \end{textblock}
-
- \only<2->{%
- \begin{textblock}{5}(9.1,7.2)
- \begin{tikzpicture}
- \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
- {@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$};
- \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}};
- \end{tikzpicture}
- \end{textblock}}
-
- \only<3->{
- \begin{textblock}{11.9}(1.7,3)
- \begin{block}{}
- \begin{minipage}{11.4cm}\raggedright
- Two directions:\medskip\\
- \begin{tabular}{@ {}ll}
- 1.)\;finite $\Rightarrow$ regular\\
- \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm]
- 2.)\;regular $\Rightarrow$ finite\\
- \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
- \end{tabular}
-
- \end{minipage}
- \end{block}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-*}
-
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<-1>[c]
- \frametitle{\begin{tabular}{@ {}l}\LARGE%
- Transitions between Eq-Classes\end{tabular}}
-
- \begin{center}
- \begin{tikzpicture}[scale=3]
- \draw[very thick] (0.5,0.5) circle (.6cm);
- \clip[draw] (0.5,0.5) circle (.6cm);
- \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
- \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);
- \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6);
- \draw[white] (0.1,0.7) node (X) {$X$};
- \draw[white] (0.9,0.5) node (Y) {$Y$};
- \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y);
- \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {};
- \end{tikzpicture}
- \end{center}
-
- \begin{center}
- \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y}
- \end{center}
-
- \onslide<8>{
- \begin{tabular}{c}
- \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
- \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
- \node[state,initial] (q_0) {$R_1$};
- \end{tikzpicture}
- \end{tabular}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{\LARGE The Other Direction}
-
- One has to prove
-
- \begin{center}
- \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
- \end{center}
-
- by induction on \smath{r}. Not trivial, but after a bit
- of thinking, one can find a \alert{refined} relation:\bigskip
-
-
- \begin{center}
- \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c}
- \begin{tikzpicture}[scale=1.1]
- %Circle
- \draw[thick] (0,0) circle (1.1);
- \end{tikzpicture}
- &
- \begin{tikzpicture}[scale=1.1]
- %Circle
- \draw[thick] (0,0) circle (1.1);
- %Main rays
- \foreach \a in {0, 90,...,359}
- \draw[very thick] (0, 0) -- (\a:1.1);
- \foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
- \draw (\a: 0.65) node {\small$a_\l$};
- \end{tikzpicture}
- &
- \begin{tikzpicture}[scale=1.1]
- %Circle
- \draw[red, thick] (0,0) circle (1.1);
- %Main rays
- \foreach \a in {0, 45,...,359}
- \draw[red, very thick] (0, 0) -- (\a:1.1);
- \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
- \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}};
- \end{tikzpicture}\\
- \small\smath{U\!N\!IV} &
- \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} &
- \small\smath{U\!N\!IV /\!/ \alert{R}}
- \end{tabular}}
- \end{center}
-
- \begin{textblock}{5}(9.8,2.6)
- \begin{tikzpicture}
- \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
- \end{tikzpicture}
- \end{textblock}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[t]
- \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}}
-
- \begin{itemize}
- \item introduced by Brozowski~'64
- \item a regular expressions after a character has been parsed\\[-18mm]\mbox{}
- \end{itemize}
-
- \only<1>{%
- \textcolor{blue}{%
- \begin{center}
- \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}}
- der c $\varnothing$ & $\dn$ & $\varnothing$\\
- der c [] & $\dn$ & $\varnothing$\\
- der c d & $\dn$ & if c $=$ d then [] else $\varnothing$\\
- der c ($r_1 + r_2$) & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\
- der c ($r^\star$) & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\
- der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
- & & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\
- & & else (der c $r_1$) $\cdot$ $r_2$\\
- \end{tabular}
- \end{center}}}
- \only<2>{%
- \textcolor{blue}{%
- \begin{center}
- \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
- pder c $\varnothing$ & $\dn$ & \alert{$\{\}$}\\
- pder c [] & $\dn$ & \alert{$\{\}$}\\
- pder c d & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\
- pder c ($r_1 + r_2$) & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\
- pder c ($r^\star$) & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\
- pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
- & & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\
- & & else (pder c $r_1$) $\cdot$ $r_2$\\
- \end{tabular}
- \end{center}}}
-
- \only<2>{
- \begin{textblock}{6}(8.5,4.7)
- \begin{block}{}
- \begin{quote}
- \begin{minipage}{6cm}\raggedright
- \begin{itemize}
- \item partial derivatives
- \item by Antimirov~'95
- \end{itemize}
- \end{minipage}
- \end{quote}
- \end{block}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[t]
- \frametitle{\LARGE Partial Derivatives}
-
- \mbox{}\\[0mm]\mbox{}
-
- \begin{itemize}
-
- \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}}
- {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}}
- refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause
- \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause
- \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed.
- \end{itemize}
-
- \only<2->{%
- \begin{textblock}{5}(3.9,7.2)
- \begin{tikzpicture}
- \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
- \draw (2.2,0) node {Antimirov '95};
- \end{tikzpicture}
- \end{textblock}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[t]
- \frametitle{\LARGE What Have We Achieved?}
-
- \begin{itemize}
- \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
- \medskip\pause
- \item regular languages are closed under complementation; this is now easy
- \begin{center}
- \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}}
- \end{center}\pause\medskip
-
- \item non-regularity (\smath{a^nb^n})\medskip\pause\pause
-
- \item take \alert{\bf any} language; build the language of substrings\\
- \pause
-
- then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star})
-
- \end{itemize}
-
-\only<2>{
-\begin{textblock}{10}(4,14)
-\small
-\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
-\end{textblock}}
-
-\only<4>{
-\begin{textblock}{5}(2,8.6)
-\begin{minipage}{8.8cm}
-\begin{block}{}
-\begin{minipage}{8.6cm}
-If there exists a sufficiently large set \smath{B} (for example infinitely large),
-such that
-
-\begin{center}
-\smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}.
-\end{center}
-
-then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n})
-\end{minipage}
-\end{block}
-\end{minipage}
-\end{textblock}
-}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[b]
- \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1-2>[c]
- \frametitle{\begin{tabular}{c}Examples\end{tabular}}
- \mbox{}\\[-6mm]
-
- \textcolor{blue}{
- \begin{center}
- $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$
- $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$
- \end{center}}
-
- \textcolor{blue}{
- \begin{center}
- $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\
- \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$
- \end{center}}
-
- \onslide<2->
- {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$,
- \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip
-
- 2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$
- }
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-
-(*<*)
-end
-(*>*)
\ No newline at end of file