--- a/Attic/UnusedQuotBase.thy Sat May 12 21:05:59 2012 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,90 +0,0 @@
-lemma in_fun:
- shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
- by (simp add: mem_def)
-
-lemma respects_thm:
- shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
- unfolding Respects_def
- by (simp add: expand_fun_eq)
-
-lemma respects_rep_abs:
- assumes a: "Quotient R1 Abs1 Rep1"
- and b: "Respects (R1 ===> R2) f"
- and c: "R1 x x"
- shows "R2 (f (Rep1 (Abs1 x))) (f x)"
- using a b[simplified respects_thm] c unfolding Quotient_def
- by blast
-
-lemma respects_mp:
- assumes a: "Respects (R1 ===> R2) f"
- and b: "R1 x y"
- shows "R2 (f x) (f y)"
- using a b unfolding Respects_def
- by simp
-
-lemma respects_o:
- assumes a: "Respects (R2 ===> R3) f"
- and b: "Respects (R1 ===> R2) g"
- shows "Respects (R1 ===> R3) (f o g)"
- using a b unfolding Respects_def
- by simp
-
-lemma fun_rel_eq_rel:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
- \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
- using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
- by blast
-
-lemma let_babs:
- "v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
- by (simp add: Babs_def)
-
-lemma fun_rel_equals:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and r1: "Respects (R1 ===> R2) f"
- and r2: "Respects (R1 ===> R2) g"
- shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
- apply(rule_tac iffI)
- apply(rule)+
- apply (rule apply_rsp'[of "R1" "R2"])
- apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]])
- apply auto
- using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
- apply (metis let_rsp q1)
- apply (metis fun_rel_eq_rel let_rsp q1 q2 r2)
- using r1 unfolding Respects_def expand_fun_eq
- apply(simp (no_asm_use))
- apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
- done
-
-(* ask Peter: fun_rel_IMP used twice *)
-lemma fun_rel_IMP2:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and r1: "Respects (R1 ===> R2) f"
- and r2: "Respects (R1 ===> R2) g"
- and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
- shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
- using q1 q2 r1 r2 a
- by (simp add: fun_rel_equals)
-
-lemma lambda_rep_abs_rsp:
- assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
- and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
- shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
- using r1 r2 by auto
-
-(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
-lemma id_prs:
- assumes q: "Quotient R Abs Rep"
- shows "Abs (id (Rep e)) = id e"
- using Quotient_abs_rep[OF q] by auto
-
-lemma id_rsp:
- assumes q: "Quotient R Abs Rep"
- and a: "R e1 e2"
- shows "R (id e1) (id e2)"
- using a by auto