--- a/Attic/Quot/Quotient_List.thy Sat May 12 21:05:59 2012 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,232 +0,0 @@
-(* Title: Quotient_List.thy
- Author: Cezary Kaliszyk and Christian Urban
-*)
-theory Quotient_List
-imports Quotient Quotient_Syntax List
-begin
-
-section {* Quotient infrastructure for the list type. *}
-
-fun
- list_rel
-where
- "list_rel R [] [] = True"
-| "list_rel R (x#xs) [] = False"
-| "list_rel R [] (x#xs) = False"
-| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"
-
-declare [[map list = (map, list_rel)]]
-
-lemma split_list_all:
- shows "(\<forall>x. P x) \<longleftrightarrow> P [] \<and> (\<forall>x xs. P (x#xs))"
- apply(auto)
- apply(case_tac x)
- apply(simp_all)
- done
-
-lemma map_id[id_simps]:
- shows "map id = id"
- apply(simp add: expand_fun_eq)
- apply(rule allI)
- apply(induct_tac x)
- apply(simp_all)
- done
-
-
-lemma list_rel_reflp:
- shows "equivp R \<Longrightarrow> list_rel R xs xs"
- apply(induct xs)
- apply(simp_all add: equivp_reflp)
- done
-
-lemma list_rel_symp:
- assumes a: "equivp R"
- shows "list_rel R xs ys \<Longrightarrow> list_rel R ys xs"
- apply(induct xs ys rule: list_induct2')
- apply(simp_all)
- apply(rule equivp_symp[OF a])
- apply(simp)
- done
-
-lemma list_rel_transp:
- assumes a: "equivp R"
- shows "list_rel R xs1 xs2 \<Longrightarrow> list_rel R xs2 xs3 \<Longrightarrow> list_rel R xs1 xs3"
- apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2')
- apply(simp_all)
- apply(case_tac xs3)
- apply(simp_all)
- apply(rule equivp_transp[OF a])
- apply(auto)
- done
-
-lemma list_equivp[quot_equiv]:
- assumes a: "equivp R"
- shows "equivp (list_rel R)"
- apply(rule equivpI)
- unfolding reflp_def symp_def transp_def
- apply(subst split_list_all)
- apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a])
- apply(blast intro: list_rel_symp[OF a])
- apply(blast intro: list_rel_transp[OF a])
- done
-
-lemma list_rel_rel:
- assumes q: "Quotient R Abs Rep"
- shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"
- apply(induct r s rule: list_induct2')
- apply(simp_all)
- using Quotient_rel[OF q]
- apply(metis)
- done
-
-lemma list_quotient[quot_thm]:
- assumes q: "Quotient R Abs Rep"
- shows "Quotient (list_rel R) (map Abs) (map Rep)"
- unfolding Quotient_def
- apply(subst split_list_all)
- apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id)
- apply(rule conjI)
- apply(rule allI)
- apply(induct_tac a)
- apply(simp)
- apply(simp)
- apply(simp add: Quotient_rep_reflp[OF q])
- apply(rule allI)+
- apply(rule list_rel_rel[OF q])
- done
-
-
-lemma cons_prs_aux:
- assumes q: "Quotient R Abs Rep"
- shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"
- by (induct t) (simp_all add: Quotient_abs_rep[OF q])
-
-lemma cons_prs[quot_preserve]:
- assumes q: "Quotient R Abs Rep"
- shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
- by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q])
- (simp)
-
-lemma cons_rsp[quot_respect]:
- assumes q: "Quotient R Abs Rep"
- shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)"
- by (auto)
-
-lemma nil_prs[quot_preserve]:
- assumes q: "Quotient R Abs Rep"
- shows "map Abs [] = []"
- by simp
-
-lemma nil_rsp[quot_respect]:
- assumes q: "Quotient R Abs Rep"
- shows "list_rel R [] []"
- by simp
-
-lemma map_prs_aux:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
- by (induct l)
- (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
-
-
-lemma map_prs[quot_preserve]:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
- by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b])
- (simp)
-
-
-lemma map_rsp[quot_respect]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"
- apply(simp)
- apply(rule allI)+
- apply(rule impI)
- apply(rule allI)+
- apply (induct_tac xa ya rule: list_induct2')
- apply simp_all
- done
-
-lemma foldr_prs_aux:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
- by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
-
-lemma foldr_prs[quot_preserve]:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
- by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b])
- (simp)
-
-lemma foldl_prs_aux:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
- by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
-
-
-lemma foldl_prs[quot_preserve]:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
- by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b])
- (simp)
-
-lemma list_rel_empty:
- shows "list_rel R [] b \<Longrightarrow> length b = 0"
- by (induct b) (simp_all)
-
-lemma list_rel_len:
- shows "list_rel R a b \<Longrightarrow> length a = length b"
- apply (induct a arbitrary: b)
- apply (simp add: list_rel_empty)
- apply (case_tac b)
- apply simp_all
- done
-
-(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)
-lemma foldl_rsp[quot_respect]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"
- apply(auto)
- apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")
- apply simp
- apply (rule_tac x="xa" in spec)
- apply (rule_tac x="ya" in spec)
- apply (rule_tac xs="xb" and ys="yb" in list_induct2)
- apply (rule list_rel_len)
- apply (simp_all)
- done
-
-lemma foldr_rsp[quot_respect]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr"
- apply auto
- apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)")
- apply simp
- apply (rule_tac xs="xa" and ys="ya" in list_induct2)
- apply (rule list_rel_len)
- apply (simp_all)
- done
-
-lemma list_rel_eq[id_simps]:
- shows "(list_rel (op =)) = (op =)"
- unfolding expand_fun_eq
- apply(rule allI)+
- apply(induct_tac x xa rule: list_induct2')
- apply(simp_all)
- done
-
-lemma list_rel_refl:
- assumes a: "\<And>x y. R x y = (R x = R y)"
- shows "list_rel R x x"
- by (induct x) (auto simp add: a)
-
-end