--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Manual/Term1.thy Tue Mar 23 08:19:33 2010 +0100
@@ -0,0 +1,261 @@
+theory Term1
+imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" "../Attic/Prove"
+begin
+
+atom_decl name
+
+section {*** lets with binding patterns ***}
+
+datatype rtrm1 =
+ rVr1 "name"
+| rAp1 "rtrm1" "rtrm1"
+| rLm1 "name" "rtrm1" --"name is bound in trm1"
+| rLt1 "bp" "rtrm1" "rtrm1" --"all variables in bp are bound in the 2nd trm1"
+and bp =
+ BUnit
+| BVr "name"
+| BPr "bp" "bp"
+
+print_theorems
+
+(* to be given by the user *)
+
+primrec
+ bv1
+where
+ "bv1 (BUnit) = {}"
+| "bv1 (BVr x) = {atom x}"
+| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
+
+setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term1.rtrm1") 2 *}
+thm permute_rtrm1_permute_bp.simps
+
+local_setup {*
+ snd o define_fv_alpha (Datatype.the_info @{theory} "Term1.rtrm1")
+ [[[], [], [(NONE, 0, 1)], [(SOME (@{term bv1}, true), 0, 2)]],
+ [[], [], []]] [(@{term bv1}, 1, [[], [0], [0, 1]])] *}
+
+notation
+ alpha_rtrm1 ("_ \<approx>1 _" [100, 100] 100) and
+ alpha_bp ("_ \<approx>1b _" [100, 100] 100)
+thm alpha_rtrm1_alpha_bp_alpha_bv1.intros
+(*thm fv_rtrm1_fv_bp.simps[no_vars]*)
+
+local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_inj}, []), (build_alpha_inj @{thms alpha_rtrm1_alpha_bp_alpha_bv1.intros} @{thms rtrm1.distinct rtrm1.inject bp.distinct bp.inject} @{thms alpha_rtrm1.cases alpha_bp.cases alpha_bv1.cases} ctxt)) ctxt)) *}
+thm alpha1_inj
+
+local_setup {*
+snd o (build_eqvts @{binding bv1_eqvt} [@{term bv1}] (build_eqvts_tac @{thm rtrm1_bp.inducts(2)} @{thms bv1.simps permute_rtrm1_permute_bp.simps} @{context}))
+*}
+
+local_setup {*
+snd o build_eqvts @{binding fv_rtrm1_fv_bp_eqvt} [@{term fv_rtrm1}, @{term fv_bp}] (build_eqvts_tac @{thm rtrm1_bp.induct} @{thms fv_rtrm1_fv_bp.simps permute_rtrm1_permute_bp.simps} @{context})
+*}
+
+(*local_setup {*
+snd o build_eqvts @{binding fv_rtrm1_fv_bv1_eqvt} [@{term fv_rtrm1}, @{term fv_bv1}] (build_eqvts_tac @{thm rtrm1_bp.induct} @{thms fv_rtrm1_fv_bv1.simps permute_rtrm1_permute_bp.simps} @{context})
+*}
+print_theorems
+
+local_setup {*
+snd o build_eqvts @{binding fv_bp_eqvt} [@{term fv_bp}] (build_eqvts_tac @{thm rtrm1_bp.inducts(2)} @{thms fv_rtrm1_fv_bv1.simps fv_bp.simps permute_rtrm1_permute_bp.simps} @{context})
+*}
+print_theorems
+*)
+
+local_setup {*
+(fn ctxt => snd (Local_Theory.note ((@{binding alpha1_eqvt}, []),
+build_alpha_eqvts [@{term alpha_rtrm1}, @{term alpha_bp}, @{term alpha_bv1}] (fn _ => alpha_eqvt_tac @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms permute_rtrm1_permute_bp.simps alpha1_inj} ctxt 1) ctxt) ctxt)) *}
+
+lemma alpha1_eqvt_proper[eqvt]:
+ "pi \<bullet> (t \<approx>1 s) = ((pi \<bullet> t) \<approx>1 (pi \<bullet> s))"
+ "pi \<bullet> (alpha_bp a b) = (alpha_bp (pi \<bullet> a) (pi \<bullet> b))"
+ apply (simp_all only: eqvts)
+ apply rule
+ apply (simp_all add: alpha1_eqvt)
+ apply (subst permute_minus_cancel(2)[symmetric,of "t" "pi"])
+ apply (subst permute_minus_cancel(2)[symmetric,of "s" "pi"])
+ apply (simp_all only: alpha1_eqvt)
+ apply rule
+ apply (simp_all add: alpha1_eqvt)
+ apply (subst permute_minus_cancel(2)[symmetric,of "a" "pi"])
+ apply (subst permute_minus_cancel(2)[symmetric,of "b" "pi"])
+ apply (simp_all only: alpha1_eqvt)
+done
+thm eqvts_raw(1)
+
+lemma "(b \<approx>1 a \<longrightarrow> a \<approx>1 b) \<and> (x \<approx>1b y \<longrightarrow> y \<approx>1b x) \<and> (alpha_bv1 x y \<longrightarrow> alpha_bv1 y x)"
+apply (tactic {* symp_tac @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms alpha1_inj} @{thms alpha1_eqvt} @{context} 1 *})
+done
+
+lemma alpha1_equivp:
+ "equivp alpha_rtrm1"
+ "equivp alpha_bp"
+sorry
+
+(*
+local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []),
+ (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}, @{term alpha_bv1}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *}
+thm alpha1_equivp*)
+
+local_setup {* define_quotient_type [(([], @{binding trm1}, NoSyn), (@{typ rtrm1}, @{term alpha_rtrm1}))]
+ (rtac @{thm alpha1_equivp(1)} 1) *}
+
+local_setup {*
+(fn ctxt => ctxt
+ |> snd o (Quotient_Def.quotient_lift_const ("Vr1", @{term rVr1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Ap1", @{term rAp1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lm1", @{term rLm1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lt1", @{term rLt1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_trm1", @{term fv_rtrm1})))
+*}
+print_theorems
+
+local_setup {* snd o prove_const_rsp @{binding fv_rtrm1_rsp} [@{term fv_rtrm1}]
+ (fn _ => Skip_Proof.cheat_tac @{theory}) *}
+local_setup {* snd o prove_const_rsp @{binding rVr1_rsp} [@{term rVr1}]
+ (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *}
+local_setup {* snd o prove_const_rsp @{binding rAp1_rsp} [@{term rAp1}]
+ (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *}
+local_setup {* snd o prove_const_rsp @{binding rLm1_rsp} [@{term rLm1}]
+ (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *}
+local_setup {* snd o prove_const_rsp @{binding rLt1_rsp} [@{term rLt1}]
+ (fn _ => Skip_Proof.cheat_tac @{theory}) *}
+local_setup {* snd o prove_const_rsp @{binding permute_rtrm1_rsp} [@{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"}]
+ (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha1_eqvt}) 1) *}
+
+lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted]
+lemmas trm1_bp_inducts = rtrm1_bp.inducts[quot_lifted]
+
+setup {* define_lifted_perms ["Term1.trm1"] [("permute_trm1", @{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"})]
+ @{thms permute_rtrm1_permute_bp_zero permute_rtrm1_permute_bp_append} *}
+
+lemmas
+ permute_trm1 = permute_rtrm1_permute_bp.simps[quot_lifted]
+and fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted]
+and fv_trm1_eqvt = fv_rtrm1_fv_bp_eqvt[quot_lifted]
+and alpha1_INJ = alpha1_inj[unfolded alpha_gen2, unfolded alpha_gen, quot_lifted, folded alpha_gen2, folded alpha_gen]
+
+lemma supports:
+ "(supp (atom x)) supports (Vr1 x)"
+ "(supp t \<union> supp s) supports (Ap1 t s)"
+ "(supp (atom x) \<union> supp t) supports (Lm1 x t)"
+ "(supp b \<union> supp t \<union> supp s) supports (Lt1 b t s)"
+ "{} supports BUnit"
+ "(supp (atom x)) supports (BVr x)"
+ "(supp a \<union> supp b) supports (BPr a b)"
+apply(tactic {* ALLGOALS (supports_tac @{thms permute_trm1}) *})
+done
+
+prove rtrm1_bp_fs: {* snd (mk_fs [@{typ trm1}, @{typ bp}]) *}
+apply (tactic {* fs_tac @{thm trm1_bp_induct} @{thms supports} 1 *})
+done
+
+instance trm1 and bp :: fs
+apply default
+apply (simp_all add: rtrm1_bp_fs)
+done
+
+lemma fv_eq_bv_pre: "fv_bp bp = bv1 bp"
+apply(induct bp rule: trm1_bp_inducts(2))
+apply(simp_all)
+done
+
+lemma fv_eq_bv: "fv_bp = bv1"
+apply(rule ext)
+apply(rule fv_eq_bv_pre)
+done
+
+lemma helper2: "{b. \<forall>pi. pi \<bullet> (a \<rightleftharpoons> b) \<bullet> bp \<noteq> bp} = {}"
+apply auto
+apply (rule_tac x="(x \<rightleftharpoons> a)" in exI)
+apply auto
+done
+
+lemma alpha_bp_eq_eq: "alpha_bp a b = (a = b)"
+apply rule
+apply (induct a b rule: alpha_rtrm1_alpha_bp_alpha_bv1.inducts(2))
+apply (simp_all add: equivp_reflp[OF alpha1_equivp(2)])
+done
+
+lemma alpha_bp_eq: "alpha_bp = (op =)"
+apply (rule ext)+
+apply (rule alpha_bp_eq_eq)
+done
+
+lemma ex_out:
+ "(\<exists>x. Z x \<and> Q) = (Q \<and> (\<exists>x. Z x))"
+ "(\<exists>x. Q \<and> Z x) = (Q \<and> (\<exists>x. Z x))"
+ "(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
+ "(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
+ "(\<exists>x. Q \<and> P x \<and> Z x \<and> W x) = (Q \<and> (\<exists>x. P x \<and> Z x \<and> W x))"
+apply (blast)+
+done
+
+lemma Collect_neg_conj: "{x. \<not>(P x \<and> Q x)} = {x. \<not>(P x)} \<union> {x. \<not>(Q x)}"
+by (simp add: Collect_imp_eq Collect_neg_eq[symmetric])
+
+lemma supp_fv_let:
+ assumes sa : "fv_bp bp = supp bp"
+ shows "\<lbrakk>fv_trm1 ta = supp ta; fv_trm1 tb = supp tb; fv_bp bp = supp bp\<rbrakk>
+ \<Longrightarrow> supp (Lt1 bp ta tb) = supp ta \<union> (supp (bp, tb) - supp bp)"
+apply(fold supp_Abs)
+apply(simp (no_asm) only: fv_trm1 fv_eq_bv sa[simplified fv_eq_bv,symmetric])
+apply(simp (no_asm) only: supp_def)
+apply(simp only: permute_set_eq permute_trm1)
+apply(simp only: alpha1_INJ alpha_bp_eq)
+apply(simp only: ex_out)
+apply(simp only: Collect_neg_conj)
+apply(simp only: permute_ABS)
+apply(simp only: Abs_eq_iff)
+apply(simp only: alpha_gen supp_Pair split_conv eqvts)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) apply(rule refl)
+apply (simp only: eqvts[symmetric] fv_trm1_eqvt[symmetric])
+apply (simp only: eqvts Pair_eq)
+done
+
+lemma supp_fv:
+ "supp t = fv_trm1 t"
+ "supp b = fv_bp b"
+apply(induct t and b rule: trm1_bp_inducts)
+apply(simp_all)
+apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
+apply(simp only: supp_at_base[simplified supp_def])
+apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
+apply(simp add: Collect_imp_eq Collect_neg_eq Un_commute)
+apply(subgoal_tac "supp (Lm1 name rtrm1) = supp (Abs {atom name} rtrm1)")
+apply(simp add: supp_Abs fv_trm1)
+apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt permute_trm1)
+apply(simp add: alpha1_INJ)
+apply(simp add: Abs_eq_iff)
+apply(simp add: alpha_gen.simps)
+apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric])
+apply(simp add: supp_fv_let fv_trm1 fv_eq_bv supp_Pair)
+apply blast
+apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
+apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
+apply(simp only: supp_at_base[simplified supp_def])
+apply(simp (no_asm) only: supp_def permute_set_eq atom_eqvt permute_trm1 alpha1_INJ[simplified alpha_bp_eq])
+apply(simp add: Collect_imp_eq Collect_neg_eq[symmetric])
+apply(fold supp_def)
+apply simp
+done
+
+lemma trm1_supp:
+ "supp (Vr1 x) = {atom x}"
+ "supp (Ap1 t1 t2) = supp t1 \<union> supp t2"
+ "supp (Lm1 x t) = (supp t) - {atom x}"
+ "supp (Lt1 b t s) = supp t \<union> (supp s - bv1 b)"
+by (simp_all add: supp_fv fv_trm1 fv_eq_bv)
+
+lemma trm1_induct_strong:
+ assumes "\<And>name b. P b (Vr1 name)"
+ and "\<And>rtrm11 rtrm12 b. \<lbrakk>\<And>c. P c rtrm11; \<And>c. P c rtrm12\<rbrakk> \<Longrightarrow> P b (Ap1 rtrm11 rtrm12)"
+ and "\<And>name rtrm1 b. \<lbrakk>\<And>c. P c rtrm1; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lm1 name rtrm1)"
+ and "\<And>bp rtrm11 rtrm12 b. \<lbrakk>\<And>c. P c rtrm11; \<And>c. P c rtrm12; bv1 bp \<sharp>* b\<rbrakk> \<Longrightarrow> P b (Lt1 bp rtrm11 rtrm12)"
+ shows "P a rtrma"
+sorry
+
+end