--- a/Attic/Quot/Examples/FSet.thy Thu Apr 29 09:13:18 2010 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,433 +0,0 @@
-theory FSet
-imports "../Quotient" "../Quotient_List" "../Quotient_Product" List
-begin
-
-inductive
- list_eq (infix "\<approx>" 50)
-where
- "a#b#xs \<approx> b#a#xs"
-| "[] \<approx> []"
-| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
-| "a#a#xs \<approx> a#xs"
-| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
-| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
-
-lemma list_eq_refl:
- shows "xs \<approx> xs"
- by (induct xs) (auto intro: list_eq.intros)
-
-lemma equivp_list_eq:
- shows "equivp list_eq"
- unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
- apply(auto intro: list_eq.intros list_eq_refl)
- done
-
-quotient_type
- 'a fset = "'a list" / "list_eq"
- by (rule equivp_list_eq)
-
-quotient_definition
- "EMPTY :: 'a fset"
-is
- "[]::'a list"
-
-quotient_definition
- "INSERT :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
-is
- "op #"
-
-quotient_definition
- "FUNION :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
-is
- "op @"
-
-fun
- card1 :: "'a list \<Rightarrow> nat"
-where
- card1_nil: "(card1 []) = 0"
-| card1_cons: "(card1 (x # xs)) = (if (x mem xs) then (card1 xs) else (Suc (card1 xs)))"
-
-quotient_definition
- "CARD :: 'a fset \<Rightarrow> nat"
-is
- "card1"
-
-quotient_definition
- "fconcat :: ('a fset) fset \<Rightarrow> 'a fset"
-is
- "concat"
-
-term concat
-term fconcat
-
-text {*
- Maybe make_const_def should require a theorem that says that the particular lifted function
- respects the relation. With it such a definition would be impossible:
- make_const_def CARD @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
-*}
-
-lemma card1_0:
- fixes a :: "'a list"
- shows "(card1 a = 0) = (a = [])"
- by (induct a) auto
-
-lemma not_mem_card1:
- fixes x :: "'a"
- fixes xs :: "'a list"
- shows "(~(x mem xs)) = (card1 (x # xs) = Suc (card1 xs))"
- by auto
-
-lemma mem_cons:
- fixes x :: "'a"
- fixes xs :: "'a list"
- assumes a : "x mem xs"
- shows "x # xs \<approx> xs"
- using a by (induct xs) (auto intro: list_eq.intros )
-
-lemma card1_suc:
- fixes xs :: "'a list"
- fixes n :: "nat"
- assumes c: "card1 xs = Suc n"
- shows "\<exists>a ys. ~(a mem ys) \<and> xs \<approx> (a # ys)"
- using c
-apply(induct xs)
-apply (metis Suc_neq_Zero card1_0)
-apply (metis FSet.card1_cons list_eq.intros(6) list_eq_refl mem_cons)
-done
-
-definition
- rsp_fold
-where
- "rsp_fold f = ((!u v. (f u v = f v u)) \<and> (!u v w. ((f u (f v w) = f (f u v) w))))"
-
-primrec
- fold1
-where
- "fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
-| "fold1 f g z (a # A) =
- (if rsp_fold f
- then (
- if (a mem A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
- ) else z)"
-
-lemma fs1_strong_cases:
- fixes X :: "'a list"
- shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a mem Y) \<and> (X \<approx> a # Y)))"
- apply (induct X)
- apply (simp)
- apply (metis List.member.simps(1) list_eq.intros(6) list_eq_refl mem_cons)
- done
-
-quotient_definition
- "IN :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool"
-is
- "op mem"
-
-quotient_definition
- "FOLD :: ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b fset \<Rightarrow> 'a"
-is
- "fold1"
-
-quotient_definition
- "fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
-is
- "map"
-
-lemma mem_rsp:
- fixes z
- assumes a: "x \<approx> y"
- shows "(z mem x) = (z mem y)"
- using a by induct auto
-
-lemma ho_memb_rsp[quot_respect]:
- "(op = ===> (op \<approx> ===> op =)) (op mem) (op mem)"
- by (simp add: mem_rsp)
-
-lemma card1_rsp:
- fixes a b :: "'a list"
- assumes e: "a \<approx> b"
- shows "card1 a = card1 b"
- using e by induct (simp_all add: mem_rsp)
-
-lemma ho_card1_rsp[quot_respect]:
- "(op \<approx> ===> op =) card1 card1"
- by (simp add: card1_rsp)
-
-lemma cons_rsp:
- fixes z
- assumes a: "xs \<approx> ys"
- shows "(z # xs) \<approx> (z # ys)"
- using a by (rule list_eq.intros(5))
-
-lemma ho_cons_rsp[quot_respect]:
- "(op = ===> op \<approx> ===> op \<approx>) op # op #"
- by (simp add: cons_rsp)
-
-lemma append_rsp_aux1:
- assumes a : "l2 \<approx> r2 "
- shows "(h @ l2) \<approx> (h @ r2)"
-using a
-apply(induct h)
-apply(auto intro: list_eq.intros(5))
-done
-
-lemma append_rsp_aux2:
- assumes a : "l1 \<approx> r1" "l2 \<approx> r2 "
- shows "(l1 @ l2) \<approx> (r1 @ r2)"
-using a
-apply(induct arbitrary: l2 r2)
-apply(simp_all)
-apply(blast intro: list_eq.intros append_rsp_aux1)+
-done
-
-lemma append_rsp[quot_respect]:
- "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
- by (auto simp add: append_rsp_aux2)
-
-lemma map_rsp:
- assumes a: "a \<approx> b"
- shows "map f a \<approx> map f b"
- using a
- apply (induct)
- apply(auto intro: list_eq.intros)
- done
-
-lemma ho_map_rsp[quot_respect]:
- "(op = ===> op \<approx> ===> op \<approx>) map map"
- by (simp add: map_rsp)
-
-lemma map_append:
- "(map f (a @ b)) \<approx> (map f a) @ (map f b)"
- by simp (rule list_eq_refl)
-
-lemma ho_fold_rsp[quot_respect]:
- "(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
- apply (auto)
- apply (case_tac "rsp_fold x")
- prefer 2
- apply (erule_tac list_eq.induct)
- apply (simp_all)
- apply (erule_tac list_eq.induct)
- apply (simp_all)
- apply (auto simp add: mem_rsp rsp_fold_def)
-done
-
-lemma list_equiv_rsp[quot_respect]:
- shows "(op \<approx> ===> op \<approx> ===> op =) op \<approx> op \<approx>"
-by (auto intro: list_eq.intros)
-
-lemma "IN x EMPTY = False"
-apply(lifting member.simps(1))
-done
-
-lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
-apply (lifting member.simps(2))
-done
-
-lemma "INSERT a (INSERT a x) = INSERT a x"
-apply (lifting list_eq.intros(4))
-done
-
-lemma "x = xa \<Longrightarrow> INSERT a x = INSERT a xa"
-apply (lifting list_eq.intros(5))
-done
-
-lemma "CARD x = Suc n \<Longrightarrow> (\<exists>a b. \<not> IN a b & x = INSERT a b)"
-apply (lifting card1_suc)
-done
-
-lemma "(\<not> IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))"
-apply (lifting not_mem_card1)
-done
-
-lemma "FOLD f g (z::'b) (INSERT a x) =
- (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"
-apply(lifting fold1.simps(2))
-done
-
-lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"
-apply (lifting map_append)
-done
-
-lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)"
-apply (lifting append_assoc)
-done
-
-
-lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
-apply(lifting list.induct)
-done
-
-lemma list_induct_part:
- assumes a: "P (x :: 'a list) ([] :: 'c list)"
- assumes b: "\<And>e t. P x t \<Longrightarrow> P x (e # t)"
- shows "P x l"
- apply (rule_tac P="P x" in list.induct)
- apply (rule a)
- apply (rule b)
- apply (assumption)
- done
-
-lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
-apply (lifting list_induct_part)
-done
-
-lemma "P (x :: 'a fset) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
-apply (lifting list_induct_part)
-done
-
-lemma "P (x :: 'a fset) ([] :: 'c list) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (e # t)) \<Longrightarrow> P x l"
-apply (lifting list_induct_part)
-done
-
-quotient_type 'a fset2 = "'a list" / "list_eq"
- by (rule equivp_list_eq)
-
-quotient_definition
- "EMPTY2 :: 'a fset2"
-is
- "[]::'a list"
-
-quotient_definition
- "INSERT2 :: 'a \<Rightarrow> 'a fset2 \<Rightarrow> 'a fset2"
-is
- "op #"
-
-lemma "P (x :: 'a fset2) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
-apply (lifting list_induct_part)
-done
-
-lemma "P (x :: 'a fset) (EMPTY2 :: 'c fset2) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT2 e t)) \<Longrightarrow> P x l"
-apply (lifting list_induct_part)
-done
-
-quotient_definition
- "fset_rec :: 'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
-is
- "list_rec"
-
-quotient_definition
- "fset_case :: 'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
-is
- "list_case"
-
-(* Probably not true without additional assumptions about the function *)
-lemma list_rec_rsp[quot_respect]:
- "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
- apply (auto)
- apply (erule_tac list_eq.induct)
- apply (simp_all)
- sorry
-
-lemma list_case_rsp[quot_respect]:
- "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
- apply (auto)
- sorry
-
-lemma "fset_rec (f1::'t) x (INSERT a xa) = x a xa (fset_rec f1 x xa)"
-apply (lifting list.recs(2))
-done
-
-lemma "fset_case (f1::'t) f2 (INSERT a xa) = f2 a xa"
-apply (lifting list.cases(2))
-done
-
-lemma ttt: "((op @) x ((op #) e [])) = (((op #) e x))"
-sorry
-
-lemma "(FUNION x (INSERT e EMPTY)) = ((INSERT e x))"
-apply (lifting ttt)
-done
-
-
-lemma ttt2: "(\<lambda>e. ((op @) x ((op #) e []))) = (\<lambda>e. ((op #) e x))"
-sorry
-
-lemma "(\<lambda>e. (FUNION x (INSERT e EMPTY))) = (\<lambda>e. (INSERT e x))"
-apply(lifting ttt2)
-apply(regularize)
-apply(rule impI)
-apply(simp)
-apply(rule allI)
-apply(rule list_eq_refl)
-done
-
-lemma ttt3: "(\<lambda>x. ((op @) x (e # []))) = (op #) e"
-sorry
-
-lemma "(\<lambda>x. (FUNION x (INSERT e EMPTY))) = INSERT e"
-apply(lifting ttt3)
-apply(regularize)
-apply(auto simp add: cons_rsp)
-done
-lemma hard: "(\<lambda>P. \<lambda>Q. P (Q (x::'a list))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a list)))"
-sorry
-
-lemma eq_imp_rel:
- shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
- by (simp add: equivp_reflp)
-
-
-lemma hard_lift: "(\<lambda>P. \<lambda>Q. P (Q (x::'a fset))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a fset)))"
-apply(lifting hard)
-apply(regularize)
-apply(rule fun_rel_id_asm)
-apply(subst babs_simp)
-apply(tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
-apply(rule fun_rel_id_asm)
-apply(rule impI)
-apply(rule mp[OF eq_imp_rel[OF fset_equivp]])
-apply(drule fun_cong)
-apply(drule fun_cong)
-apply(assumption)
-done
-
-lemma test: "All (\<lambda>(x::'a list, y). x = y)"
-sorry
-
-lemma "All (\<lambda>(x::'a fset, y). x = y)"
-apply(lifting test)
-done
-
-lemma test2: "Ex (\<lambda>(x::'a list, y). x = y)"
-sorry
-
-lemma "Ex (\<lambda>(x::'a fset, y). x = y)"
-apply(lifting test2)
-done
-
-lemma test3: "All (\<lambda> (x :: 'a list, y, z). x = y \<and> y = z)"
-sorry
-
-lemma "All (\<lambda> (x :: 'a fset, y, z). x = y \<and> y = z)"
-apply(lifting test3)
-done
-
-lemma test4: "\<forall> (x :: 'a list, y, z) \<in> Respects(
- prod_rel (op \<approx>) (prod_rel (op \<approx>) (op \<approx>))
-). x = y \<and> y = z"
-sorry
-
-lemma "All (\<lambda> (x :: 'a fset, y, z). x = y \<and> y = z)"
-apply (lifting test4)
-sorry
-
-lemma test5: "\<forall> (x :: 'a list \<Rightarrow> 'a list, y) \<in> Respects(
- prod_rel (op \<approx> ===> op \<approx>) (op \<approx> ===> op \<approx>)
-). (op \<approx> ===> op \<approx>) x y"
-sorry
-
-lemma "All (\<lambda> (x :: 'a fset \<Rightarrow> 'a fset, y). x = y)"
-apply (lifting test5)
-done
-
-lemma test6: "\<forall> (x :: 'a list \<Rightarrow> 'a list, y, z) \<in> Respects(
- prod_rel (op \<approx> ===> op \<approx>) (prod_rel (op \<approx> ===> op \<approx>) (op \<approx> ===> op \<approx>))
-). (op \<approx> ===> op \<approx>) x y \<and> (op \<approx> ===> op \<approx>) y z"
-sorry
-
-lemma "All (\<lambda> (x :: 'a fset \<Rightarrow> 'a fset, y, z). x = y \<and> y = z)"
-apply (lifting test6)
-done
-
-end