--- a/Nominal-General/Nominal2_Base.thy Fri Apr 30 14:21:18 2010 +0100
+++ b/Nominal-General/Nominal2_Base.thy Fri Apr 30 15:34:26 2010 +0100
@@ -1067,10 +1067,17 @@
unfolding fresh_def supp_def
unfolding MOST_iff_cofinite by simp
+lemma supp_subset_fresh:
+ assumes a: "\<And>a. a \<sharp> x \<Longrightarrow> a \<sharp> y"
+ shows "supp y \<subseteq> supp x"
+ using a
+ unfolding fresh_def
+ by blast
+
lemma fresh_fun_app:
assumes "a \<sharp> f" and "a \<sharp> x"
shows "a \<sharp> f x"
- using assms
+ using assms
unfolding fresh_conv_MOST
unfolding permute_fun_app_eq
by (elim MOST_rev_mp, simp)
@@ -1081,22 +1088,22 @@
unfolding fresh_def
by auto
+text {* support of equivariant functions *}
+
lemma supp_fun_eqvt:
- assumes a: "\<forall>p. p \<bullet> f = f"
+ assumes a: "\<And>p. p \<bullet> f = f"
shows "supp f = {}"
unfolding supp_def
using a by simp
-
lemma fresh_fun_eqvt_app:
- assumes a: "\<forall>p. p \<bullet> f = f"
+ assumes a: "\<And>p. p \<bullet> f = f"
shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
proof -
from a have "supp f = {}" by (simp add: supp_fun_eqvt)
then show "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
unfolding fresh_def
- using supp_fun_app
- by auto
+ using supp_fun_app by auto
qed