--- a/Nominal/nominal_dt_rawperm.ML Tue Dec 07 14:27:21 2010 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,130 +0,0 @@
-(* Title: nominal_dt_rawperm.ML
- Author: Cezary Kaliszyk
- Author: Christian Urban
-
- Definitions of the raw permutations and
- proof that the raw datatypes are in the
- pt-class.
-*)
-
-signature NOMINAL_DT_RAWPERM =
-sig
- val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm ->
- local_theory -> (term list * thm list * thm list) * local_theory
-end
-
-
-structure Nominal_Dt_RawPerm: NOMINAL_DT_RAWPERM =
-struct
-
-
-(** proves the two pt-type class properties **)
-
-fun prove_permute_zero induct perm_defs perm_fns lthy =
- let
- val perm_types = map (body_type o fastype_of) perm_fns
- val perm_indnames = Datatype_Prop.make_tnames perm_types
-
- fun single_goal ((perm_fn, T), x) =
- HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
-
- val goals =
- HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
- (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
-
- val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
-
- val tac = (Datatype_Aux.indtac induct perm_indnames
- THEN_ALL_NEW asm_simp_tac simps) 1
- in
- Goal.prove lthy perm_indnames [] goals (K tac)
- |> Datatype_Aux.split_conj_thm
- end
-
-
-fun prove_permute_plus induct perm_defs perm_fns lthy =
- let
- val p = Free ("p", @{typ perm})
- val q = Free ("q", @{typ perm})
- val perm_types = map (body_type o fastype_of) perm_fns
- val perm_indnames = Datatype_Prop.make_tnames perm_types
-
- fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq
- (perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
-
- val goals =
- HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
- (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
-
- val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
-
- val tac = (Datatype_Aux.indtac induct perm_indnames
- THEN_ALL_NEW asm_simp_tac simps) 1
- in
- Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
- |> Datatype_Aux.split_conj_thm
- end
-
-
-fun mk_perm_eq ty_perm_assoc cnstr =
- let
- fun lookup_perm p (ty, arg) =
- case (AList.lookup (op=) ty_perm_assoc ty) of
- SOME perm => perm $ p $ arg
- | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
-
- val p = Free ("p", @{typ perm})
- val (arg_tys, ty) =
- fastype_of cnstr
- |> strip_type
-
- val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
- val args = map Free (arg_names ~~ arg_tys)
-
- val lhs = lookup_perm p (ty, list_comb (cnstr, args))
- val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
-
- val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
- in
- (Attrib.empty_binding, eq)
- end
-
-
-fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy =
- let
- val perm_fn_names = full_ty_names
- |> map Long_Name.base_name
- |> map (prefix "permute_")
-
- val perm_fn_types = map perm_ty tys
- val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
- val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
-
- val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
-
- fun tac _ (_, _, simps) =
- Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
-
- fun morphism phi (fvs, dfs, simps) =
- (map (Morphism.term phi) fvs,
- map (Morphism.thm phi) dfs,
- map (Morphism.thm phi) simps);
-
- val ((perm_funs, perm_eq_thms), lthy') =
- lthy
- |> Local_Theory.exit_global
- |> Class.instantiation (full_ty_names, tvs, @{sort pt})
- |> Primrec.add_primrec perm_fn_binds perm_eqs
-
- val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy'
- val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy'
- in
- lthy'
- |> Class.prove_instantiation_exit_result morphism tac
- (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
- ||> Named_Target.theory_init
- end
-
-
-end (* structure *)
-