Nominal/nominal_dt_rawperm.ML
changeset 2598 b136721eedb2
parent 2597 0f289a52edbe
child 2599 d6fe94028a5d
--- a/Nominal/nominal_dt_rawperm.ML	Tue Dec 07 14:27:21 2010 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,130 +0,0 @@
-(*  Title:      nominal_dt_rawperm.ML
-    Author:     Cezary Kaliszyk
-    Author:     Christian Urban
-
-  Definitions of the raw permutations and
-  proof that the raw datatypes are in the
-  pt-class.
-*)
-
-signature NOMINAL_DT_RAWPERM =
-sig
-  val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm -> 
-    local_theory -> (term list * thm list * thm list) * local_theory
-end
-
-
-structure Nominal_Dt_RawPerm: NOMINAL_DT_RAWPERM =
-struct
-
-
-(** proves the two pt-type class properties **)
-
-fun prove_permute_zero induct perm_defs perm_fns lthy =
-  let
-    val perm_types = map (body_type o fastype_of) perm_fns
-    val perm_indnames = Datatype_Prop.make_tnames perm_types
-  
-    fun single_goal ((perm_fn, T), x) =
-      HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
-
-    val goals =
-      HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
-        (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
-
-    val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
-
-    val tac = (Datatype_Aux.indtac induct perm_indnames 
-               THEN_ALL_NEW asm_simp_tac simps) 1
-  in
-    Goal.prove lthy perm_indnames [] goals (K tac)
-    |> Datatype_Aux.split_conj_thm
-  end
-
-
-fun prove_permute_plus induct perm_defs perm_fns lthy =
-  let
-    val p = Free ("p", @{typ perm})
-    val q = Free ("q", @{typ perm})
-    val perm_types = map (body_type o fastype_of) perm_fns
-    val perm_indnames = Datatype_Prop.make_tnames perm_types
-  
-    fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq 
-      (perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
-
-    val goals =
-      HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
-        (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
-
-    val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
-
-    val tac = (Datatype_Aux.indtac induct perm_indnames
-               THEN_ALL_NEW asm_simp_tac simps) 1
-  in
-    Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
-    |> Datatype_Aux.split_conj_thm 
-  end
-
-
-fun mk_perm_eq ty_perm_assoc cnstr = 
-  let
-    fun lookup_perm p (ty, arg) = 
-      case (AList.lookup (op=) ty_perm_assoc ty) of
-        SOME perm => perm $ p $ arg
-      | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
-
-    val p = Free ("p", @{typ perm})
-    val (arg_tys, ty) =
-      fastype_of cnstr
-      |> strip_type
-
-    val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
-    val args = map Free (arg_names ~~ arg_tys)
-
-    val lhs = lookup_perm p (ty, list_comb (cnstr, args))
-    val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
-  
-    val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))  
-  in
-    (Attrib.empty_binding, eq)
-  end
-
-
-fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy =
-  let
-    val perm_fn_names = full_ty_names
-      |> map Long_Name.base_name
-      |> map (prefix "permute_")
-
-    val perm_fn_types = map perm_ty tys
-    val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
-    val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
-
-    val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
-
-    fun tac _ (_, _, simps) =
-      Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
-  
-    fun morphism phi (fvs, dfs, simps) =
-      (map (Morphism.term phi) fvs, 
-       map (Morphism.thm phi) dfs, 
-       map (Morphism.thm phi) simps);
-
-    val ((perm_funs, perm_eq_thms), lthy') =
-      lthy
-      |> Local_Theory.exit_global
-      |> Class.instantiation (full_ty_names, tvs, @{sort pt}) 
-      |> Primrec.add_primrec perm_fn_binds perm_eqs
-    
-    val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy'
-    val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy'  
-  in
-    lthy'
-    |> Class.prove_instantiation_exit_result morphism tac 
-         (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
-    ||> Named_Target.theory_init
-  end
-
-
-end (* structure *)
-