Tutorial/Tutorial5.thy
changeset 2691 abb6c3ac2df2
child 2698 96f3ac5d11ad
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Tutorial/Tutorial5.thy	Fri Jan 21 22:23:44 2011 +0100
@@ -0,0 +1,142 @@
+theory Tutorial5
+imports Tutorial4
+begin
+
+
+section {* Type Preservation (fixme separate file) *}
+
+
+lemma valid_elim:
+  assumes a: "valid ((x, T) # \<Gamma>)"
+  shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
+using a by (cases) (auto)
+
+lemma valid_insert:
+  assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
+  shows "valid (\<Delta> @ \<Gamma>)" 
+using a
+by (induct \<Delta>)
+   (auto simp add: fresh_append fresh_Cons dest!: valid_elim)
+
+lemma fresh_list: 
+  shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
+by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
+
+lemma context_unique:
+  assumes a1: "valid \<Gamma>"
+  and     a2: "(x, T) \<in> set \<Gamma>"
+  and     a3: "(x, U) \<in> set \<Gamma>"
+  shows "T = U" 
+using a1 a2 a3
+by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
+
+lemma type_substitution_aux:
+  assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
+  and     b: "\<Gamma> \<turnstile> e' : T'"
+  shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T" 
+using a b 
+proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
+  case (t_Var y T x e' \<Delta>)
+  have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
+  have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact 
+  have a3: "\<Gamma> \<turnstile> e' : T'" by fact
+  from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
+  { assume eq: "x = y"
+    from a1 a2 have "T = T'" using eq by (auto intro: context_unique)
+    with a3 have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using eq a4 by (auto intro: weakening)
+  }
+  moreover
+  { assume ineq: "x \<noteq> y"
+    from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
+    then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
+  }
+  ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
+qed (force simp add: fresh_append fresh_Cons)+
+
+corollary type_substitution:
+  assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
+  and     b: "\<Gamma> \<turnstile> e' : T'"
+  shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
+using a b type_substitution_aux[where \<Delta>="[]"]
+by auto
+
+lemma t_App_elim:
+  assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
+  obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
+using a
+by (cases) (auto simp add: lam.eq_iff lam.distinct)
+
+text {* we have not yet generated strong elimination rules *}
+lemma t_Lam_elim:
+  assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" 
+  and     fc: "atom x \<sharp> \<Gamma>" 
+  obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"
+using ty fc
+apply(cases)
+apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
+apply(auto simp add: Abs1_eq_iff)
+apply(rotate_tac 3)
+apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)
+apply(perm_simp)
+apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)
+done
+
+theorem cbv_type_preservation:
+  assumes a: "t \<longrightarrow>cbv t'"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+using a b
+by (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
+   (auto elim!: t_Lam_elim t_App_elim simp add: type_substitution ty.eq_iff)
+
+corollary cbvs_type_preservation:
+  assumes a: "t \<longrightarrow>cbv* t'"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+using a b
+by (induct) (auto intro: cbv_type_preservation)
+
+text {* 
+  The type-preservation property for the machine and 
+  evaluation relation. 
+*}
+
+theorem machine_type_preservation:
+  assumes a: "<t, []> \<mapsto>* <t', []>"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+proof -
+  have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp
+  then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp
+qed
+
+theorem eval_type_preservation:
+  assumes a: "t \<Down> t'"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+proof -
+  have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp
+  then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp
+qed
+
+text {* The Progress Property *}
+
+lemma canonical_tArr:
+  assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
+  and     b: "val t"
+  obtains x t' where "t = Lam [x].t'"
+using b a by (induct) (auto) 
+
+theorem progress:
+  assumes a: "[] \<turnstile> t : T"
+  shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
+using a
+by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
+   (auto elim: canonical_tArr)
+
+text {*
+  Done! Congratulations!
+*}
+
+end
+