--- a/Nominal/Nominal2_Abs.thy Mon Jun 20 09:38:57 2011 +0900
+++ b/Nominal/Nominal2_Abs.thy Mon Jun 20 09:59:18 2011 +0900
@@ -1036,6 +1036,33 @@
apply(simp add: Abs1_eq_iff[OF s s])
done
+lemma Abs_lst_fcb:
+ fixes xs ys :: "'a :: fs"
+ and S T :: "'b :: fs"
+ assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
+ and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
+ and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
+ and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
+ shows "f xs T = f ys S"
+ using e apply -
+ apply(subst (asm) Abs_eq_iff2)
+ apply(simp add: alphas)
+ apply(elim exE conjE)
+ apply(rule trans)
+ apply(rule_tac p="p" in supp_perm_eq[symmetric])
+ apply(rule fresh_star_supp_conv)
+ apply(drule fresh_star_perm_set_conv)
+ apply(rule finite_Diff)
+ apply(rule finite_supp)
+ apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
+ apply(metis Un_absorb2 fresh_star_Un)
+ apply(subst fresh_star_Un)
+ apply(rule conjI)
+ apply(simp add: fresh_star_def f1)
+ apply(simp add: fresh_star_def f2)
+ apply(simp add: eqv)
+ done
+
lemma Abs_res_fcb:
fixes xs ys :: "('a :: at_base) set"
and S T :: "'b :: fs"