--- a/Slides/Slides1.thy Wed Mar 02 00:06:28 2011 +0000
+++ b/Slides/Slides1.thy Tue Mar 08 09:07:27 2011 +0000
@@ -11,7 +11,8 @@
text_raw {*
- \renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
+ %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
+ \renewcommand{\slidecaption}{Uppsala, 3.~March 2011}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
@@ -187,8 +188,8 @@
\onslide<2->{
\begin{center}
- \isacommand{bind\_res}\hspace{6mm}
- \isacommand{bind\_set}\hspace{6mm}
+ \isacommand{bind (set+)}\hspace{6mm}
+ \isacommand{bind (set)}\hspace{6mm}
\isacommand{bind}
\end{center}}
@@ -268,19 +269,19 @@
\begin{center}
\begin{tabular}{l}
\isacommand{bind} a b c \ldots \isacommand{in} x y z \ldots\\
- \isacommand{bind\_set} a b c \ldots \isacommand{in} x y z \ldots\\
- \isacommand{bind\_res} a b c \ldots \isacommand{in} x y z \ldots
+ \isacommand{bind (set)} a b c \ldots \isacommand{in} x y z \ldots\\
+ \isacommand{bind (set+)} a b c \ldots \isacommand{in} x y z \ldots
\end{tabular}
\end{center}\bigskip\medskip
the reason is that with our definition of $\alpha$-equivalence\medskip
\begin{center}
\begin{tabular}{l}
- \isacommand{bind\_res} as \isacommand{in} x y $\not\Leftrightarrow$\\
- \hspace{8mm}\isacommand{bind\_res} as \isacommand{in} x, \isacommand{bind\_res} as \isacommand{in} y
+ \isacommand{bind (set+)} as \isacommand{in} x y $\not\Leftrightarrow$\\
+ \hspace{8mm}\isacommand{bind (set+)} as \isacommand{in} x, \isacommand{bind (set+)} as \isacommand{in} y
\end{tabular}
\end{center}\medskip
- same with \isacommand{bind\_set}
+ same with \isacommand{bind (set)}
\end{itemize}}
\end{itemize}
@@ -374,7 +375,7 @@
\begin{tabular}{@ {\hspace{1cm}}l}
$(as, x) \onslide<2->{\approx\!}\makebox[0mm][l]{\only<2-6>{${}_{\text{set}}$}%
\only<7>{${}_{\text{\alert{list}}}$}%
- \only<8>{${}_{\text{\alert{res}}}$}}%
+ \only<8>{${}_{\text{\alert{set+}}}$}}%
\onslide<3->{^{R,\text{fv}}}\,\onslide<2->{(bs,y)}$
\end{tabular}\bigskip
\end{itemize}
@@ -438,7 +439,7 @@
{\tiny\color{darkgray}
\begin{minipage}{3.4cm}\raggedright
\begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{res:}\\
+ \multicolumn{2}{@ {}l}{set+:}\\
$\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
$\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
$\wedge$ & $\pi \cdot x = y$\\
@@ -497,7 +498,7 @@
\end{center}
\begin{itemize}
- \item $\approx_{\text{res}}$, $\approx_{\text{set}}$%
+ \item $\approx_{\text{set+}}$, $\approx_{\text{set}}$%
\only<2>{, \alert{$\not\approx_{\text{list}}$}}
\end{itemize}
@@ -509,7 +510,7 @@
{\tiny\color{darkgray}
\begin{minipage}{3.4cm}\raggedright
\begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{res:}\\
+ \multicolumn{2}{@ {}l}{set+:}\\
$\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
$\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
$\wedge$ & $\pi \cdot x = y$\\
@@ -567,7 +568,7 @@
\end{center}
\begin{itemize}
- \item $\approx_{\text{res}}$, $\not\approx_{\text{set}}$,
+ \item $\approx_{\text{set+}}$, $\not\approx_{\text{set}}$,
$\not\approx_{\text{list}}$
\end{itemize}
@@ -579,7 +580,7 @@
{\tiny\color{darkgray}
\begin{minipage}{3.4cm}\raggedright
\begin{tabular}{r@ {\hspace{1mm}}l}
- \multicolumn{2}{@ {}l}{res:}\\
+ \multicolumn{2}{@ {}l}{set+:}\\
$\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
$\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
$\wedge$ & $\pi \cdot x = y$\\
@@ -668,7 +669,7 @@
\only<1->{
\begin{textblock}{8}(12,3.8)
- \footnotesize $^*$ set, res, list
+ \footnotesize $^*$ set, set+, list
\end{textblock}}
\end{frame}}
@@ -883,7 +884,7 @@
\infer[\text{LetRec-}\!\approx_\alpha]
{\text{LetRec}\;as\;t \approx_\alpha \text{LetRec}\;as'\;t'}
{(\text{bn}(as), (t, as)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
- ^{R,fv} (\text{bn}(as'), (t', as'))}
+ ^{R,\text{fv}} (\text{bn}(as'), (t', as'))}
\]\bigskip
\onslide<1->{\alert{deep recursive binders}}
@@ -933,7 +934,7 @@
\item the properties for support are implied by the properties of $[\_].\_$
- \item we can derive strong induction principles (almost automatic---matter of time)
+ \item we can derive strong induction principles
\end{itemize}
@@ -981,7 +982,7 @@
\begin{itemize}
\item Core Haskell: 11 types, 49 term-constructors, 7 binding functions
\begin{center}
- $\sim$ 1 min
+ $\sim$ 2 mins
\end{center}
\end{itemize}
@@ -1059,6 +1060,22 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1->[c]
+ \frametitle{\begin{tabular}{c}Future Work\end{tabular}}
+ \mbox{}\\[-6mm]
+
+ \begin{itemize}
+ \item Function definitions
+ \end{itemize}
+
+ \end{frame}}
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+*}
+
+
+text_raw {*
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ \mode<presentation>{
+ \begin{frame}<1->[c]
\frametitle{\begin{tabular}{c}Questions?\end{tabular}}
\mbox{}\\[-6mm]
@@ -1070,6 +1087,8 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
+
+
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
@@ -1088,10 +1107,10 @@
\end{center}
\onslide<2->
- {1.) \hspace{3mm}\isacommand{bind\_set} as \isacommand{in} $\tau_1$,
- \isacommand{bind\_set} as \isacommand{in} $\tau_2$\medskip
+ {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$,
+ \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip
- 2.) \hspace{3mm}\isacommand{bind\_set} as \isacommand{in} $\tau_1$ $\tau_2$
+ 2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$
}
\end{frame}}