--- a/FSet.thy Wed Oct 28 01:49:31 2009 +0100
+++ b/FSet.thy Wed Oct 28 10:17:07 2009 +0100
@@ -94,12 +94,7 @@
lemma card1_0:
fixes a :: "'a list"
shows "(card1 a = 0) = (a = [])"
- apply (induct a)
- apply (simp)
- apply (simp_all)
- apply meson
- apply (simp_all)
- done
+ by (induct a) auto
lemma not_mem_card1:
fixes x :: "'a"
@@ -107,16 +102,12 @@
shows "~(x memb xs) \<Longrightarrow> card1 (x # xs) = Suc (card1 xs)"
by simp
-
lemma mem_cons:
fixes x :: "'a"
fixes xs :: "'a list"
assumes a : "x memb xs"
shows "x # xs \<approx> xs"
- using a
- apply (induct xs)
- apply (auto intro: list_eq.intros)
- done
+ using a by (induct xs) (auto intro: list_eq.intros )
lemma card1_suc:
fixes xs :: "'a list"
@@ -177,30 +168,18 @@
thm fmap_def
-
+ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def fmap_def fold_def} *}
+ML {* val consts = map (fst o dest_Const o fst o Logic.dest_equals o concl_of) fset_defs *}
-ML {*
+(* ML {*
val consts = [@{const_name "Nil"}, @{const_name "Cons"},
@{const_name "membship"}, @{const_name "card1"},
@{const_name "append"}, @{const_name "fold1"},
@{const_name "map"}];
-*}
-
-ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def fmap_def fold_def} *}
+*} *)
-ML {*
-fun add_lower_defs ctxt defs =
- let
- val defs_pre_sym = map symmetric defs
- val defs_atom = map atomize_thm defs_pre_sym
- val defs_all = flat (map (add_lower_defs_aux ctxt) defs_atom)
- in
- map Thm.varifyT defs_all
- end
-*}
ML {* val fset_defs_sym = add_lower_defs @{context} fset_defs *}
-
lemma memb_rsp:
fixes z
assumes a: "list_eq x y"
@@ -209,22 +188,16 @@
lemma ho_memb_rsp:
"(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
- apply (simp add: FUN_REL.simps)
- apply (metis memb_rsp)
- done
+ by (simp add: memb_rsp)
lemma card1_rsp:
fixes a b :: "'a list"
assumes e: "a \<approx> b"
shows "card1 a = card1 b"
- using e apply induct
- apply (simp_all add:memb_rsp)
- done
+ using e by induct (simp_all add:memb_rsp)
lemma ho_card1_rsp: "op \<approx> ===> op = card1 card1"
- apply (simp add: FUN_REL.simps)
- apply (metis card1_rsp)
- done
+ by (simp add: card1_rsp)
lemma cons_rsp:
fixes z
@@ -234,27 +207,64 @@
lemma ho_cons_rsp:
"op = ===> op \<approx> ===> op \<approx> op # op #"
- apply (simp add: FUN_REL.simps)
- apply (metis cons_rsp)
- done
+ by (simp add: cons_rsp)
lemma append_rsp_fst:
assumes a : "list_eq l1 l2"
- shows "list_eq (l1 @ s) (l2 @ s)"
+ shows "(l1 @ s) \<approx> (l2 @ s)"
using a
- apply(induct)
- apply(auto intro: list_eq.intros)
- apply(rule list_eq_refl)
-done
+ by (induct) (auto intro: list_eq.intros list_eq_refl)
+
+lemma append_end:
+ shows "(e # l) \<approx> (l @ [e])"
+ apply (induct l)
+ apply (auto intro: list_eq.intros list_eq_refl)
+ done
+
+lemma rev_rsp:
+ shows "a \<approx> rev a"
+ apply (induct a)
+ apply simp
+ apply (rule list_eq_refl)
+ apply simp_all
+ apply (rule list_eq.intros(6))
+ prefer 2
+ apply (rule append_rsp_fst)
+ apply assumption
+ apply (rule append_end)
+ done
-(* Need stronger induction... *)
-lemma "(a @ b) \<approx> (b @ a)"
- apply(induct a)
- sorry
+lemma append_sym_rsp:
+ shows "(a @ b) \<approx> (b @ a)"
+ apply (rule list_eq.intros(6))
+ apply (rule append_rsp_fst)
+ apply (rule rev_rsp)
+ apply (rule list_eq.intros(6))
+ apply (rule rev_rsp)
+ apply (simp)
+ apply (rule append_rsp_fst)
+ apply (rule list_eq.intros(3))
+ apply (rule rev_rsp)
+ done
+
+lemma append_rsp:
+ assumes a : "list_eq l1 r1"
+ assumes b : "list_eq l2 r2 "
+ shows "(l1 @ l2) \<approx> (r1 @ r2)"
+ apply (rule list_eq.intros(6))
+ apply (rule append_rsp_fst)
+ using a apply (assumption)
+ apply (rule list_eq.intros(6))
+ apply (rule append_sym_rsp)
+ apply (rule list_eq.intros(6))
+ apply (rule append_rsp_fst)
+ using b apply (assumption)
+ apply (rule append_sym_rsp)
+ done
lemma ho_append_rsp:
"op \<approx> ===> op \<approx> ===> op \<approx> op @ op @"
-sorry
+ by (simp add: append_rsp)
lemma map_rsp:
assumes a: "a \<approx> b"