--- a/Nominal/Ex/Lambda.thy Mon Jul 20 11:21:59 2015 +0100
+++ b/Nominal/Ex/Lambda.thy Tue Mar 22 12:18:30 2016 +0000
@@ -72,23 +72,6 @@
unfolding Ident_def
by simp
-thm lam.strong_induct
-
-lemma alpha_lam_raw_eqvt[eqvt]: "p \<bullet> (alpha_lam_raw x y) = alpha_lam_raw (p \<bullet> x) (p \<bullet> y)"
- unfolding alpha_lam_raw_def
- by perm_simp rule
-
-lemma abs_lam_eqvt[eqvt]: "(p \<bullet> abs_lam t) = abs_lam (p \<bullet> t)"
-proof -
- have "alpha_lam_raw (rep_lam (abs_lam t)) t"
- using rep_abs_rsp_left Quotient3_lam equivp_reflp lam_equivp by metis
- then have "alpha_lam_raw (p \<bullet> rep_lam (abs_lam t)) (p \<bullet> t)"
- unfolding alpha_lam_raw_eqvt[symmetric] permute_pure .
- then have "abs_lam (p \<bullet> rep_lam (abs_lam t)) = abs_lam (p \<bullet> t)"
- using Quotient3_rel Quotient3_lam by metis
- thus ?thesis using permute_lam_def id_apply map_fun_apply by metis
-qed
-
section {* Simple examples from Norrish 2004 *}