Quot/Nominal/Rsp.thy
changeset 1230 a41c3a105104
parent 1227 ec2e0116779e
--- a/Quot/Nominal/Rsp.thy	Tue Feb 23 16:12:30 2010 +0100
+++ b/Quot/Nominal/Rsp.thy	Tue Feb 23 18:27:32 2010 +0100
@@ -14,7 +14,7 @@
 *}
 
 ML {*
-fun const_rsp const lthy =
+fun const_rsp lthy const =
 let
   val nty = fastype_of (Quotient_Term.quotient_lift_const ("", const) lthy)
   val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
@@ -23,13 +23,17 @@
 end
 *}
 
+(* Replaces bounds by frees and meta implications by implications *)
 ML {*
-fun remove_alls trm =
+fun prepare_goal trm =
 let
   val vars = strip_all_vars trm
   val fs = rev (map Free vars)
+  val (fixes, no_alls) = ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
+  val prems = map HOLogic.dest_Trueprop (Logic.strip_imp_prems no_alls)
+  val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl no_alls)
 in
-  ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
+  (fixes, fold (curry HOLogic.mk_imp) prems concl)
 end
 *}
 
@@ -41,31 +45,41 @@
 in
   case (SINGLE (tac 1) goalstate) of
     NONE => error "rsp_goal failed"
-  | SOME th => remove_alls (term_of (cprem_of th 1))
+  | SOME th => prepare_goal (term_of (cprem_of th 1))
 end
 *}
 
 ML {*
-fun prove_const_rsp bind const tac ctxt =
+fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm
+*}
+
+ML {*
+fun prove_const_rsp bind consts tac ctxt =
 let
-  val rsp_goal = const_rsp const ctxt
+  val rsp_goals = map (const_rsp ctxt) consts
   val thy = ProofContext.theory_of ctxt
-  val (fixed, user_goal) = get_rsp_goal thy rsp_goal
-  val user_thm = Goal.prove ctxt fixed [] user_goal tac
-  fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' rtac user_thm THEN_ALL_NEW atac) 1
-  val rsp_thm = Goal.prove ctxt [] [] rsp_goal tac
+  val (fixed, user_goals) = split_list (map (get_rsp_goal thy) rsp_goals)
+  val fixed' = distinct (op =) (flat fixed)
+  val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
+  val user_thm = Goal.prove ctxt fixed' [] user_goal tac
+  val user_thms = map repeat_mp (HOLogic.conj_elims user_thm)
+  fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' resolve_tac user_thms THEN_ALL_NEW atac) 1
+  val rsp_thms = map (fn gl => Goal.prove ctxt [] [] gl tac) rsp_goals
 in
    ctxt
 |> snd o Local_Theory.note 
-  ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), [rsp_thm])
-|> snd o Local_Theory.note ((bind, []), [user_thm])
+  ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), rsp_thms)
+|> snd o Local_Theory.note ((bind, []), user_thms)
 end
 *}
 
+
+
 ML {*
-fun fv_rsp_tac induct fv_simps =
-  eresolve_tac induct THEN_ALL_NEW
-  asm_full_simp_tac (HOL_ss addsimps (@{thm alpha_gen} :: fv_simps))
+fun fvbv_rsp_tac induct fvbv_simps =
+  ((((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
+  (TRY o rtac @{thm TrueI})) THEN_ALL_NEW asm_full_simp_tac
+  (HOL_ss addsimps (@{thm alpha_gen} :: fvbv_simps)))
 *}
 
 ML {*
@@ -73,7 +87,7 @@
 let
   val reflps = map (fn x => @{thm equivp_reflp} OF [x]) equivps
 in
-  REPEAT o rtac @{thm fun_rel_id} THEN'
+  REPEAT o rtac impI THEN'
   simp_tac (HOL_ss addsimps inj) THEN'
   (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)) THEN_ALL_NEW
   (asm_simp_tac HOL_ss THEN_ALL_NEW (
@@ -84,5 +98,21 @@
 end
 *}
 
+(* Testing code
+local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} [@{term rbv2}]
+  (fn _ => fv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms fv_rtrm2_fv_rassign.simps} 1) *}*)
+
+(*ML {*
+  val rsp_goals = map (const_rsp @{context}) [@{term rbv2}]
+  val (fixed, user_goals) = split_list (map (get_rsp_goal @{theory}) rsp_goals)
+  val fixed' = distinct (op =) (flat fixed)
+  val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
+*}
+prove ug: {* user_goal *}
+ML_prf {*
+val induct = @{thm alpha_rtrm2_alpha_rassign.inducts(2)}
+val fv_simps = @{thms rbv2.simps}
+*} 
+*)
 
 end