--- a/Nominal/Nominal2_FSet.thy Wed Apr 21 21:52:30 2010 +0200
+++ b/Nominal/Nominal2_FSet.thy Thu Apr 22 05:16:23 2010 +0200
@@ -71,55 +71,6 @@
apply (simp add: atom_fmap_cong)
done
-lemma supp_atom_insert:
- "finite (xs :: atom set) \<Longrightarrow> supp (insert x xs) = supp x \<union> supp xs"
- apply (simp add: supp_finite_atom_set)
- apply (simp add: supp_atom)
- done
-
-lemma atom_image_cong:
- shows "(atom ` X = atom ` Y) = (X = Y)"
- apply(rule inj_image_eq_iff)
- apply(simp add: inj_on_def)
- done
-
-lemma atom_eqvt_raw:
- fixes p::"perm"
- shows "(p \<bullet> atom) = atom"
- apply(perm_simp)
- apply(simp)
- done
-
-lemma supp_finite_at_set:
- fixes S::"('a :: at) set"
- assumes a: "finite S"
- shows "supp S = atom ` S"
- apply(rule finite_supp_unique)
- apply(simp add: supports_def)
- apply (rule finite_induct[OF a])
- apply (simp add: eqvts)
- apply (simp)
- apply clarify
- apply (subst atom_image_cong[symmetric])
- apply (subst atom_eqvt_raw[symmetric])
- apply (subst eqvts[symmetric])
- apply (rule swap_set_not_in)
- apply simp_all
- apply(rule finite_imageI)
- apply(rule a)
- apply (subst atom_image_cong[symmetric])
- apply (subst atom_eqvt_raw[symmetric])
- apply (subst eqvts[symmetric])
- apply (rule swap_set_in)
- apply simp_all
- done
-
-lemma supp_at_insert:
- "finite (xs :: ('a :: at) set) \<Longrightarrow> supp (insert x xs) = supp x \<union> supp xs"
- apply (simp add: supp_finite_at_set)
- apply (simp add: supp_at_base)
- done
-
lemma supp_atom_finsert:
"supp (finsert (x :: atom) S) = supp x \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
@@ -129,7 +80,8 @@
done
lemma supp_at_finsert:
- "supp (finsert (x :: 'a :: at) S) = supp x \<union> supp S"
+ fixes S::"('a::at) fset"
+ shows "supp (finsert x S) = supp x \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
apply (simp add: supp_finite_atom_set)
apply (simp add: supp_at_insert[OF fin_fset_to_set])