Quot/quotient_term.ML
changeset 1260 9df6144e281b
parent 1259 db158e995bfc
child 1261 853abc14c5c6
--- a/Quot/quotient_term.ML	Thu Feb 25 07:48:57 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,786 +0,0 @@
-(*  Title:      quotient_term.thy
-    Author:     Cezary Kaliszyk and Christian Urban
-
-    Constructs terms corresponding to goals from
-    lifting theorems to quotient types.
-*)
-
-signature QUOTIENT_TERM =
-sig
-  exception LIFT_MATCH of string
-
-  datatype flag = AbsF | RepF
-
-  val absrep_fun: flag -> Proof.context -> typ * typ -> term
-  val absrep_fun_chk: flag -> Proof.context -> typ * typ -> term
-
-  (* Allows Nitpick to represent quotient types as single elements from raw type *)
-  val absrep_const_chk: flag -> Proof.context -> string -> term
-
-  val equiv_relation: Proof.context -> typ * typ -> term
-  val equiv_relation_chk: Proof.context -> typ * typ -> term
-
-  val regularize_trm: Proof.context -> term * term -> term
-  val regularize_trm_chk: Proof.context -> term * term -> term
-
-  val inj_repabs_trm: Proof.context -> term * term -> term
-  val inj_repabs_trm_chk: Proof.context -> term * term -> term
-
-  val quotient_lift_const: string * term -> local_theory -> term
-  val quotient_lift_all: Proof.context -> term -> term
-end;
-
-structure Quotient_Term: QUOTIENT_TERM =
-struct
-
-open Quotient_Info;
-
-exception LIFT_MATCH of string
-
-
-
-(*** Aggregate Rep/Abs Function ***)
-
-
-(* The flag RepF is for types in negative position; AbsF is for types
-   in positive position. Because of this, function types need to be
-   treated specially, since there the polarity changes.
-*)
-
-datatype flag = AbsF | RepF
-
-fun negF AbsF = RepF
-  | negF RepF = AbsF
-
-fun is_identity (Const (@{const_name "id"}, _)) = true
-  | is_identity _ = false
-
-fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
-
-fun mk_fun_compose flag (trm1, trm2) =
-  case flag of
-    AbsF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
-  | RepF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
-
-fun get_mapfun ctxt s =
-let
-  val thy = ProofContext.theory_of ctxt
-  val exn = LIFT_MATCH ("No map function for type " ^ quote s ^ " found.")
-  val mapfun = #mapfun (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
-in
-  Const (mapfun, dummyT)
-end
-
-(* makes a Free out of a TVar *)
-fun mk_Free (TVar ((x, i), _)) = Free (unprefix "'" x ^ string_of_int i, dummyT)
-
-(* produces an aggregate map function for the
-   rty-part of a quotient definition; abstracts
-   over all variables listed in vs (these variables
-   correspond to the type variables in rty)
-
-   for example for: (?'a list * ?'b)
-   it produces:     %a b. prod_map (map a) b
-*)
-fun mk_mapfun ctxt vs rty =
-let
-  val vs' = map (mk_Free) vs
-
-  fun mk_mapfun_aux rty =
-    case rty of
-      TVar _ => mk_Free rty
-    | Type (_, []) => mk_identity rty
-    | Type (s, tys) => list_comb (get_mapfun ctxt s, map mk_mapfun_aux tys)
-    | _ => raise LIFT_MATCH "mk_mapfun (default)"
-in
-  fold_rev Term.lambda vs' (mk_mapfun_aux rty)
-end
-
-(* looks up the (varified) rty and qty for
-   a quotient definition
-*)
-fun get_rty_qty ctxt s =
-let
-  val thy = ProofContext.theory_of ctxt
-  val exn = LIFT_MATCH ("No quotient type " ^ quote s ^ " found.")
-  val qdata = (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
-in
-  (#rtyp qdata, #qtyp qdata)
-end
-
-(* takes two type-environments and looks
-   up in both of them the variable v, which
-   must be listed in the environment
-*)
-fun double_lookup rtyenv qtyenv v =
-let
-  val v' = fst (dest_TVar v)
-in
-  (snd (the (Vartab.lookup rtyenv v')), snd (the (Vartab.lookup qtyenv v')))
-end
-
-(* matches a type pattern with a type *)
-fun match ctxt err ty_pat ty =
-let
-  val thy = ProofContext.theory_of ctxt
-in
-  Sign.typ_match thy (ty_pat, ty) Vartab.empty
-  handle MATCH_TYPE => err ctxt ty_pat ty
-end
-
-(* produces the rep or abs constant for a qty *)
-fun absrep_const flag ctxt qty_str =
-let
-  val thy = ProofContext.theory_of ctxt
-  val qty_name = Long_Name.base_name qty_str
-in
-  case flag of
-    AbsF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
-  | RepF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
-end
-
-(* Lets Nitpick represent elements of quotient types as elements of the raw type *)
-fun absrep_const_chk flag ctxt qty_str =
-  Syntax.check_term ctxt (absrep_const flag ctxt qty_str)
-
-fun absrep_match_err ctxt ty_pat ty =
-let
-  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
-  val ty_str = Syntax.string_of_typ ctxt ty
-in
-  raise LIFT_MATCH (space_implode " "
-    ["absrep_fun (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
-end
-
-
-(** generation of an aggregate absrep function **)
-
-(* - In case of equal types we just return the identity.
-
-   - In case of TFrees we also return the identity.
-
-   - In case of function types we recurse taking
-     the polarity change into account.
-
-   - If the type constructors are equal, we recurse for the
-     arguments and build the appropriate map function.
-
-   - If the type constructors are unequal, there must be an
-     instance of quotient types:
-
-       - we first look up the corresponding rty_pat and qty_pat
-         from the quotient definition; the arguments of qty_pat
-         must be some distinct TVars
-       - we then match the rty_pat with rty and qty_pat with qty;
-         if matching fails the types do not correspond -> error
-       - the matching produces two environments; we look up the
-         assignments for the qty_pat variables and recurse on the
-         assignments
-       - we prefix the aggregate map function for the rty_pat,
-         which is an abstraction over all type variables
-       - finally we compose the result with the appropriate
-         absrep function in case at least one argument produced
-         a non-identity function /
-         otherwise we just return the appropriate absrep
-         function
-
-     The composition is necessary for types like
-
-        ('a list) list / ('a foo) foo
-
-     The matching is necessary for types like
-
-        ('a * 'a) list / 'a bar
-
-     The test is necessary in order to eliminate superfluous
-     identity maps.
-*)
-
-fun absrep_fun flag ctxt (rty, qty) =
-  if rty = qty
-  then mk_identity rty
-  else
-    case (rty, qty) of
-      (Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
-        let
-          val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
-          val arg2 = absrep_fun flag ctxt (ty2, ty2')
-        in
-          list_comb (get_mapfun ctxt "fun", [arg1, arg2])
-        end
-    | (Type (s, tys), Type (s', tys')) =>
-        if s = s'
-        then
-           let
-             val args = map (absrep_fun flag ctxt) (tys ~~ tys')
-           in
-             list_comb (get_mapfun ctxt s, args)
-           end
-        else
-           let
-             val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
-             val rtyenv = match ctxt absrep_match_err rty_pat rty
-             val qtyenv = match ctxt absrep_match_err qty_pat qty
-             val args_aux = map (double_lookup rtyenv qtyenv) vs
-             val args = map (absrep_fun flag ctxt) args_aux
-             val map_fun = mk_mapfun ctxt vs rty_pat
-             val result = list_comb (map_fun, args)
-           in
-             if forall is_identity args
-             then absrep_const flag ctxt s'
-             else mk_fun_compose flag (absrep_const flag ctxt s', result)
-           end
-    | (TFree x, TFree x') =>
-        if x = x'
-        then mk_identity rty
-        else raise (LIFT_MATCH "absrep_fun (frees)")
-    | (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
-    | _ => raise (LIFT_MATCH "absrep_fun (default)")
-
-fun absrep_fun_chk flag ctxt (rty, qty) =
-  absrep_fun flag ctxt (rty, qty)
-  |> Syntax.check_term ctxt
-
-
-
-
-(*** Aggregate Equivalence Relation ***)
-
-
-(* works very similar to the absrep generation,
-   except there is no need for polarities
-*)
-
-(* instantiates TVars so that the term is of type ty *)
-fun force_typ ctxt trm ty =
-let
-  val thy = ProofContext.theory_of ctxt
-  val trm_ty = fastype_of trm
-  val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
-in
-  map_types (Envir.subst_type ty_inst) trm
-end
-
-fun is_eq (Const (@{const_name "op ="}, _)) = true
-  | is_eq _ = false
-
-fun mk_rel_compose (trm1, trm2) =
-  Const (@{const_name "rel_conj"}, dummyT) $ trm1 $ trm2
-
-fun get_relmap ctxt s =
-let
-  val thy = ProofContext.theory_of ctxt
-  val exn = LIFT_MATCH ("get_relmap (no relation map function found for type " ^ s ^ ")")
-  val relmap = #relmap (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
-in
-  Const (relmap, dummyT)
-end
-
-fun mk_relmap ctxt vs rty =
-let
-  val vs' = map (mk_Free) vs
-
-  fun mk_relmap_aux rty =
-    case rty of
-      TVar _ => mk_Free rty
-    | Type (_, []) => HOLogic.eq_const rty
-    | Type (s, tys) => list_comb (get_relmap ctxt s, map mk_relmap_aux tys)
-    | _ => raise LIFT_MATCH ("mk_relmap (default)")
-in
-  fold_rev Term.lambda vs' (mk_relmap_aux rty)
-end
-
-fun get_equiv_rel ctxt s =
-let
-  val thy = ProofContext.theory_of ctxt
-  val exn = LIFT_MATCH ("get_quotdata (no quotient found for type " ^ s ^ ")")
-in
-  #equiv_rel (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
-end
-
-fun equiv_match_err ctxt ty_pat ty =
-let
-  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
-  val ty_str = Syntax.string_of_typ ctxt ty
-in
-  raise LIFT_MATCH (space_implode " "
-    ["equiv_relation (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
-end
-
-(* builds the aggregate equivalence relation
-   that will be the argument of Respects
-*)
-fun equiv_relation ctxt (rty, qty) =
-  if rty = qty
-  then HOLogic.eq_const rty
-  else
-    case (rty, qty) of
-      (Type (s, tys), Type (s', tys')) =>
-       if s = s'
-       then
-         let
-           val args = map (equiv_relation ctxt) (tys ~~ tys')
-         in
-           list_comb (get_relmap ctxt s, args)
-         end
-       else
-         let
-           val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
-           val rtyenv = match ctxt equiv_match_err rty_pat rty
-           val qtyenv = match ctxt equiv_match_err qty_pat qty
-           val args_aux = map (double_lookup rtyenv qtyenv) vs
-           val args = map (equiv_relation ctxt) args_aux
-           val rel_map = mk_relmap ctxt vs rty_pat
-           val result = list_comb (rel_map, args)
-           val eqv_rel = get_equiv_rel ctxt s'
-           val eqv_rel' = force_typ ctxt eqv_rel ([rty, rty] ---> @{typ bool})
-         in
-           if forall is_eq args
-           then eqv_rel'
-           else mk_rel_compose (result, eqv_rel')
-         end
-      | _ => HOLogic.eq_const rty
-
-fun equiv_relation_chk ctxt (rty, qty) =
-  equiv_relation ctxt (rty, qty)
-  |> Syntax.check_term ctxt
-
-
-
-(*** Regularization ***)
-
-(* Regularizing an rtrm means:
-
- - Quantifiers over types that need lifting are replaced
-   by bounded quantifiers, for example:
-
-      All P  ----> All (Respects R) P
-
-   where the aggregate relation R is given by the rty and qty;
-
- - Abstractions over types that need lifting are replaced
-   by bounded abstractions, for example:
-
-      %x. P  ----> Ball (Respects R) %x. P
-
- - Equalities over types that need lifting are replaced by
-   corresponding equivalence relations, for example:
-
-      A = B  ----> R A B
-
-   or
-
-      A = B  ----> (R ===> R) A B
-
-   for more complicated types of A and B
-
-
- The regularize_trm accepts raw theorems in which equalities
- and quantifiers match exactly the ones in the lifted theorem
- but also accepts partially regularized terms.
-
- This means that the raw theorems can have:
-   Ball (Respects R),  Bex (Respects R), Bex1_rel (Respects R), Babs, R
- in the places where:
-   All, Ex, Ex1, %, (op =)
- is required the lifted theorem.
-
-*)
-
-val mk_babs = Const (@{const_name Babs}, dummyT)
-val mk_ball = Const (@{const_name Ball}, dummyT)
-val mk_bex  = Const (@{const_name Bex}, dummyT)
-val mk_bex1_rel = Const (@{const_name Bex1_rel}, dummyT)
-val mk_resp = Const (@{const_name Respects}, dummyT)
-
-(* - applies f to the subterm of an abstraction,
-     otherwise to the given term,
-   - used by regularize, therefore abstracted
-     variables do not have to be treated specially
-*)
-fun apply_subt f (trm1, trm2) =
-  case (trm1, trm2) of
-    (Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
-  | _ => f (trm1, trm2)
-
-fun term_mismatch str ctxt t1 t2 =
-let
-  val t1_str = Syntax.string_of_term ctxt t1
-  val t2_str = Syntax.string_of_term ctxt t2
-  val t1_ty_str = Syntax.string_of_typ ctxt (fastype_of t1)
-  val t2_ty_str = Syntax.string_of_typ ctxt (fastype_of t2)
-in
-  raise LIFT_MATCH (cat_lines [str, t1_str ^ "::" ^ t1_ty_str, t2_str ^ "::" ^ t2_ty_str])
-end
-
-(* the major type of All and Ex quantifiers *)
-fun qnt_typ ty = domain_type (domain_type ty)
-
-(* Checks that two types match, for example:
-     rty -> rty   matches   qty -> qty *)
-fun matches_typ thy rT qT =
-  if rT = qT then true else
-  case (rT, qT) of
-    (Type (rs, rtys), Type (qs, qtys)) =>
-      if rs = qs then
-        if length rtys <> length qtys then false else
-        forall (fn x => x = true) (map2 (matches_typ thy) rtys qtys)
-      else
-        (case Quotient_Info.quotdata_lookup_raw thy qs of
-          SOME quotinfo => Sign.typ_instance thy (rT, #rtyp quotinfo)
-        | NONE => false)
-  | _ => false
-
-
-(* produces a regularized version of rtrm
-
-   - the result might contain dummyTs
-
-   - for regularisation we do not need any
-     special treatment of bound variables
-*)
-fun regularize_trm ctxt (rtrm, qtrm) =
-  case (rtrm, qtrm) of
-    (Abs (x, ty, t), Abs (_, ty', t')) =>
-       let
-         val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
-       in
-         if ty = ty' then subtrm
-         else mk_babs $ (mk_resp $ equiv_relation ctxt (ty, ty')) $ subtrm
-       end
-  | (Const (@{const_name "Babs"}, T) $ resrel $ (t as (Abs (_, ty, _))), t' as (Abs (_, ty', _))) =>
-       let
-         val subtrm = regularize_trm ctxt (t, t')
-         val needres = mk_resp $ equiv_relation_chk ctxt (ty, ty')
-       in
-         if resrel <> needres
-         then term_mismatch "regularize (Babs)" ctxt resrel needres
-         else mk_babs $ resrel $ subtrm
-       end
-
-  | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
-       let
-         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
-       in
-         if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
-         else mk_ball $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
-       end
-
-  | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
-       let
-         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
-       in
-         if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
-         else mk_bex $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
-       end
-
-  | (Const (@{const_name "Ex1"}, ty) $ (Abs (_, _,
-      (Const (@{const_name "op &"}, _) $ (Const (@{const_name "op :"}, _) $ _ $
-        (Const (@{const_name "Respects"}, _) $ resrel)) $ (t $ _)))),
-     Const (@{const_name "Ex1"}, ty') $ t') =>
-       let
-         val t_ = incr_boundvars (~1) t
-         val subtrm = apply_subt (regularize_trm ctxt) (t_, t')
-         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
-       in
-         if resrel <> needrel
-         then term_mismatch "regularize (Bex1)" ctxt resrel needrel
-         else mk_bex1_rel $ resrel $ subtrm
-       end
-
-  | (Const (@{const_name "Ex1"}, ty) $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
-       let
-         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
-       in
-         if ty = ty' then Const (@{const_name "Ex1"}, ty) $ subtrm
-         else mk_bex1_rel $ (equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
-       end
-
-  | (Const (@{const_name "Ball"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
-     Const (@{const_name "All"}, ty') $ t') =>
-       let
-         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
-         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
-       in
-         if resrel <> needrel
-         then term_mismatch "regularize (Ball)" ctxt resrel needrel
-         else mk_ball $ (mk_resp $ resrel) $ subtrm
-       end
-
-  | (Const (@{const_name "Bex"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
-     Const (@{const_name "Ex"}, ty') $ t') =>
-       let
-         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
-         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
-       in
-         if resrel <> needrel
-         then term_mismatch "regularize (Bex)" ctxt resrel needrel
-         else mk_bex $ (mk_resp $ resrel) $ subtrm
-       end
-
-  | (Const (@{const_name "Bex1_rel"}, ty) $ resrel $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
-       let
-         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
-         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
-       in
-         if resrel <> needrel
-         then term_mismatch "regularize (Bex1_res)" ctxt resrel needrel
-         else mk_bex1_rel $ resrel $ subtrm
-       end
-
-  | (* equalities need to be replaced by appropriate equivalence relations *)
-    (Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
-         if ty = ty' then rtrm
-         else equiv_relation ctxt (domain_type ty, domain_type ty')
-
-  | (* in this case we just check whether the given equivalence relation is correct *)
-    (rel, Const (@{const_name "op ="}, ty')) =>
-       let
-         val rel_ty = fastype_of rel
-         val rel' = equiv_relation_chk ctxt (domain_type rel_ty, domain_type ty')
-       in
-         if rel' aconv rel then rtrm
-         else term_mismatch "regularise (relation mismatch)" ctxt rel rel'
-       end
-
-  | (_, Const _) =>
-       let
-         val thy = ProofContext.theory_of ctxt
-         fun same_const (Const (s, T)) (Const (s', T')) = (s = s') andalso matches_typ thy T T'
-           | same_const _ _ = false
-       in
-         if same_const rtrm qtrm then rtrm
-         else
-           let
-             val rtrm' = #rconst (qconsts_lookup thy qtrm)
-               handle Quotient_Info.NotFound => term_mismatch "regularize(constant notfound)" ctxt rtrm qtrm
-           in
-             if Pattern.matches thy (rtrm', rtrm)
-             then rtrm else term_mismatch "regularize(constant mismatch)" ctxt rtrm qtrm
-           end
-       end
-
-  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, Abs(v1', ty', s1))),
-     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , Abs(v2', _  , s2)))) =>
-       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, Abs (v1', ty', regularize_trm ctxt (s1, s2)))
-
-  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, s1)),
-     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , s2))) =>
-       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, regularize_trm ctxt (s1, s2))
-
-  | (t1 $ t2, t1' $ t2') =>
-       regularize_trm ctxt (t1, t1') $ regularize_trm ctxt (t2, t2')
-
-  | (Bound i, Bound i') =>
-       if i = i' then rtrm
-       else raise (LIFT_MATCH "regularize (bounds mismatch)")
-
-  | _ =>
-       let
-         val rtrm_str = Syntax.string_of_term ctxt rtrm
-         val qtrm_str = Syntax.string_of_term ctxt qtrm
-       in
-         raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
-       end
-
-fun regularize_trm_chk ctxt (rtrm, qtrm) =
-  regularize_trm ctxt (rtrm, qtrm)
-  |> Syntax.check_term ctxt
-
-
-
-(*** Rep/Abs Injection ***)
-
-(*
-Injection of Rep/Abs means:
-
-  For abstractions:
-
-  * If the type of the abstraction needs lifting, then we add Rep/Abs
-    around the abstraction; otherwise we leave it unchanged.
-
-  For applications:
-
-  * If the application involves a bounded quantifier, we recurse on
-    the second argument. If the application is a bounded abstraction,
-    we always put an Rep/Abs around it (since bounded abstractions
-    are assumed to always need lifting). Otherwise we recurse on both
-    arguments.
-
-  For constants:
-
-  * If the constant is (op =), we leave it always unchanged.
-    Otherwise the type of the constant needs lifting, we put
-    and Rep/Abs around it.
-
-  For free variables:
-
-  * We put a Rep/Abs around it if the type needs lifting.
-
-  Vars case cannot occur.
-*)
-
-fun mk_repabs ctxt (T, T') trm =
-  absrep_fun RepF ctxt (T, T') $ (absrep_fun AbsF ctxt (T, T') $ trm)
-
-fun inj_repabs_err ctxt msg rtrm qtrm =
-let
-  val rtrm_str = Syntax.string_of_term ctxt rtrm
-  val qtrm_str = Syntax.string_of_term ctxt qtrm
-in
-  raise LIFT_MATCH (space_implode " " [msg, quote rtrm_str, "and", quote qtrm_str])
-end
-
-
-(* bound variables need to be treated properly,
-   as the type of subterms needs to be calculated   *)
-fun inj_repabs_trm ctxt (rtrm, qtrm) =
- case (rtrm, qtrm) of
-    (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
-       Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
-
-  | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
-       Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
-
-  | (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
-      let
-        val rty = fastype_of rtrm
-        val qty = fastype_of qtrm
-      in
-        mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
-      end
-
-  | (Abs (x, T, t), Abs (x', T', t')) =>
-      let
-        val rty = fastype_of rtrm
-        val qty = fastype_of qtrm
-        val (y, s) = Term.dest_abs (x, T, t)
-        val (_, s') = Term.dest_abs (x', T', t')
-        val yvar = Free (y, T)
-        val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
-      in
-        if rty = qty then result
-        else mk_repabs ctxt (rty, qty) result
-      end
-
-  | (t $ s, t' $ s') =>
-       (inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))
-
-  | (Free (_, T), Free (_, T')) =>
-        if T = T' then rtrm
-        else mk_repabs ctxt (T, T') rtrm
-
-  | (_, Const (@{const_name "op ="}, _)) => rtrm
-
-  | (_, Const (_, T')) =>
-      let
-        val rty = fastype_of rtrm
-      in
-        if rty = T' then rtrm
-        else mk_repabs ctxt (rty, T') rtrm
-      end
-
-  | _ => inj_repabs_err ctxt "injection (default):" rtrm qtrm
-
-fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
-  inj_repabs_trm ctxt (rtrm, qtrm)
-  |> Syntax.check_term ctxt
-
-
-
-(*** Wrapper for automatically transforming an rthm into a qthm ***)
-
-(* subst_tys takes a list of (rty, qty) substitution pairs
-   and replaces all occurences of rty in the given type
-   by appropriate qty, with substitution *)
-fun subst_ty thy ty (rty, qty) r =
-  if r <> NONE then r else
-  case try (Sign.typ_match thy (rty, ty)) Vartab.empty of
-    SOME inst => SOME (Envir.subst_type inst qty)
-  | NONE => NONE
-fun subst_tys thy substs ty =
-  case fold (subst_ty thy ty) substs NONE of
-    SOME ty => ty
-  | NONE =>
-      (case ty of
-        Type (s, tys) => Type (s, map (subst_tys thy substs) tys)
-      | x => x)
-
-(* subst_trms takes a list of (rtrm, qtrm) substitution pairs
-   and if the given term matches any of the raw terms it
-   returns the appropriate qtrm instantiated. If none of
-   them matched it returns NONE. *)
-fun subst_trm thy t (rtrm, qtrm) s =
-  if s <> NONE then s else
-    case try (Pattern.match thy (rtrm, t)) (Vartab.empty, Vartab.empty) of
-      SOME inst => SOME (Envir.subst_term inst qtrm)
-    | NONE => NONE;
-fun subst_trms thy substs t = fold (subst_trm thy t) substs NONE
-
-(* prepares type and term substitution pairs to be used by above
-   functions that let replace all raw constructs by appropriate
-   lifted counterparts. *)
-fun get_ty_trm_substs ctxt =
-let
-  val thy = ProofContext.theory_of ctxt
-  val quot_infos  = Quotient_Info.quotdata_dest ctxt
-  val const_infos = Quotient_Info.qconsts_dest ctxt
-  val ty_substs = map (fn ri => (#rtyp ri, #qtyp ri)) quot_infos
-  val const_substs = map (fn ci => (#rconst ci, #qconst ci)) const_infos
-  fun rel_eq rel = HOLogic.eq_const (subst_tys thy ty_substs (domain_type (fastype_of rel)))
-  val rel_substs = map (fn ri => (#equiv_rel ri, rel_eq (#equiv_rel ri))) quot_infos
-in
-  (ty_substs, const_substs @ rel_substs)
-end
-
-fun quotient_lift_const (b, t) ctxt =
-let
-  val thy = ProofContext.theory_of ctxt
-  val (ty_substs, _) = get_ty_trm_substs ctxt;
-  val (_, ty) = dest_Const t;
-  val nty = subst_tys thy ty_substs ty;
-in
-  Free(b, nty)
-end
-
-(*
-Takes a term and
-
-* replaces raw constants by the quotient constants
-
-* replaces equivalence relations by equalities
-
-* replaces raw types by the quotient types
-
-*)
-
-fun quotient_lift_all ctxt t =
-let
-  val thy = ProofContext.theory_of ctxt
-  val (ty_substs, substs) = get_ty_trm_substs ctxt
-  fun lift_aux t =
-    case subst_trms thy substs t of
-      SOME x => x
-    | NONE =>
-      (case t of
-        a $ b => lift_aux a $ lift_aux b
-      | Abs(a, ty, s) =>
-          let
-            val (y, s') = Term.dest_abs (a, ty, s)
-            val nty = subst_tys thy ty_substs ty
-          in
-            Abs(y, nty, abstract_over (Free (y, nty), lift_aux s'))
-          end
-      | Free(n, ty) => Free(n, subst_tys thy ty_substs ty)
-      | Var(n, ty) => Var(n, subst_tys thy ty_substs ty)
-      | Bound i => Bound i
-      | Const(s, ty) => Const(s, subst_tys thy ty_substs ty))
-in
-  lift_aux t
-end
-
-
-end; (* structure *)
-
-
-