--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/Quot/quotient_typ.ML Thu Feb 25 07:57:17 2010 +0100
@@ -0,0 +1,309 @@
+(* Title: quotient_typ.thy
+ Author: Cezary Kaliszyk and Christian Urban
+
+ Definition of a quotient type.
+
+*)
+
+signature QUOTIENT_TYPE =
+sig
+ val quotient_type: ((string list * binding * mixfix) * (typ * term)) list
+ -> Proof.context -> Proof.state
+
+ val quotient_type_cmd: ((((string list * binding) * mixfix) * string) * string) list
+ -> Proof.context -> Proof.state
+end;
+
+structure Quotient_Type: QUOTIENT_TYPE =
+struct
+
+open Quotient_Info;
+
+(* wrappers for define, note, Attrib.internal and theorem_i *)
+fun define (name, mx, rhs) lthy =
+let
+ val ((rhs, (_ , thm)), lthy') =
+ Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
+in
+ ((rhs, thm), lthy')
+end
+
+fun note (name, thm, attrs) lthy =
+let
+ val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy
+in
+ (thm', lthy')
+end
+
+fun intern_attr at = Attrib.internal (K at)
+
+fun theorem after_qed goals ctxt =
+let
+ val goals' = map (rpair []) goals
+ fun after_qed' thms = after_qed (the_single thms)
+in
+ Proof.theorem_i NONE after_qed' [goals'] ctxt
+end
+
+
+
+(*** definition of quotient types ***)
+
+val mem_def1 = @{lemma "y : S ==> S y" by (simp add: mem_def)}
+val mem_def2 = @{lemma "S y ==> y : S" by (simp add: mem_def)}
+
+(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
+fun typedef_term rel rty lthy =
+let
+ val [x, c] =
+ [("x", rty), ("c", HOLogic.mk_setT rty)]
+ |> Variable.variant_frees lthy [rel]
+ |> map Free
+in
+ lambda c (HOLogic.exists_const rty $
+ lambda x (HOLogic.mk_eq (c, (rel $ x))))
+end
+
+
+(* makes the new type definitions and proves non-emptyness *)
+fun typedef_make (vs, qty_name, mx, rel, rty) lthy =
+let
+ val typedef_tac =
+ EVERY1 (map rtac [@{thm exI}, mem_def2, @{thm exI}, @{thm refl}])
+in
+ Local_Theory.theory_result
+ (Typedef.add_typedef false NONE
+ (qty_name, vs, mx)
+ (typedef_term rel rty lthy)
+ NONE typedef_tac) lthy
+end
+
+
+(* tactic to prove the quot_type theorem for the new type *)
+fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
+let
+ val rep_thm = #Rep typedef_info RS mem_def1
+ val rep_inv = #Rep_inverse typedef_info
+ val abs_inv = mem_def2 RS #Abs_inverse typedef_info
+ val rep_inj = #Rep_inject typedef_info
+in
+ (rtac @{thm quot_type.intro} THEN' RANGE [
+ rtac equiv_thm,
+ rtac rep_thm,
+ rtac rep_inv,
+ EVERY' (map rtac [abs_inv, @{thm exI}, @{thm refl}]),
+ rtac rep_inj]) 1
+end
+
+
+(* proves the quot_type theorem for the new type *)
+fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
+let
+ val quot_type_const = Const (@{const_name "quot_type"}, dummyT)
+ val goal =
+ HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
+ |> Syntax.check_term lthy
+in
+ Goal.prove lthy [] [] goal
+ (K (typedef_quot_type_tac equiv_thm typedef_info))
+end
+
+(* proves the quotient theorem for the new type *)
+fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
+let
+ val quotient_const = Const (@{const_name "Quotient"}, dummyT)
+ val goal =
+ HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
+ |> Syntax.check_term lthy
+
+ val typedef_quotient_thm_tac =
+ EVERY1 [
+ K (rewrite_goals_tac [abs_def, rep_def]),
+ rtac @{thm quot_type.Quotient},
+ rtac quot_type_thm]
+in
+ Goal.prove lthy [] [] goal
+ (K typedef_quotient_thm_tac)
+end
+
+
+(* main function for constructing a quotient type *)
+fun mk_quotient_type (((vs, qty_name, mx), (rty, rel)), equiv_thm) lthy =
+let
+ (* generates the typedef *)
+ val ((qty_full_name, typedef_info), lthy1) = typedef_make (vs, qty_name, mx, rel, rty) lthy
+
+ (* abs and rep functions from the typedef *)
+ val Abs_ty = #abs_type typedef_info
+ val Rep_ty = #rep_type typedef_info
+ val Abs_name = #Abs_name typedef_info
+ val Rep_name = #Rep_name typedef_info
+ val Abs_const = Const (Abs_name, Rep_ty --> Abs_ty)
+ val Rep_const = Const (Rep_name, Abs_ty --> Rep_ty)
+
+ (* more useful abs and rep definitions *)
+ val abs_const = Const (@{const_name "quot_type.abs"}, dummyT )
+ val rep_const = Const (@{const_name "quot_type.rep"}, dummyT )
+ val abs_trm = Syntax.check_term lthy1 (abs_const $ rel $ Abs_const)
+ val rep_trm = Syntax.check_term lthy1 (rep_const $ Rep_const)
+ val abs_name = Binding.prefix_name "abs_" qty_name
+ val rep_name = Binding.prefix_name "rep_" qty_name
+
+ val ((abs, abs_def), lthy2) = define (abs_name, NoSyn, abs_trm) lthy1
+ val ((rep, rep_def), lthy3) = define (rep_name, NoSyn, rep_trm) lthy2
+
+ (* quot_type theorem *)
+ val quot_thm = typedef_quot_type_thm (rel, Abs_const, Rep_const, equiv_thm, typedef_info) lthy3
+
+ (* quotient theorem *)
+ val quotient_thm = typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_thm) lthy3
+ val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name
+
+ (* name equivalence theorem *)
+ val equiv_thm_name = Binding.suffix_name "_equivp" qty_name
+
+ (* storing the quot-info *)
+ fun qinfo phi = transform_quotdata phi
+ {qtyp = Abs_ty, rtyp = rty, equiv_rel = rel, equiv_thm = equiv_thm}
+ val lthy4 = Local_Theory.declaration true
+ (fn phi => quotdata_update_gen qty_full_name (qinfo phi)) lthy3
+in
+ lthy4
+ |> note (quotient_thm_name, quotient_thm, [intern_attr quotient_rules_add])
+ ||>> note (equiv_thm_name, equiv_thm, [intern_attr equiv_rules_add])
+end
+
+
+(* sanity checks for the quotient type specifications *)
+fun sanity_check ((vs, qty_name, _), (rty, rel)) =
+let
+ val rty_tfreesT = map fst (Term.add_tfreesT rty [])
+ val rel_tfrees = map fst (Term.add_tfrees rel [])
+ val rel_frees = map fst (Term.add_frees rel [])
+ val rel_vars = Term.add_vars rel []
+ val rel_tvars = Term.add_tvars rel []
+ val qty_str = Binding.str_of qty_name ^ ": "
+
+ val illegal_rel_vars =
+ if null rel_vars andalso null rel_tvars then []
+ else [qty_str ^ "illegal schematic variable(s) in the relation."]
+
+ val dup_vs =
+ (case duplicates (op =) vs of
+ [] => []
+ | dups => [qty_str ^ "duplicate type variable(s) on the lhs: " ^ commas_quote dups])
+
+ val extra_rty_tfrees =
+ (case subtract (op =) vs rty_tfreesT of
+ [] => []
+ | extras => [qty_str ^ "extra type variable(s) on the lhs: " ^ commas_quote extras])
+
+ val extra_rel_tfrees =
+ (case subtract (op =) vs rel_tfrees of
+ [] => []
+ | extras => [qty_str ^ "extra type variable(s) in the relation: " ^ commas_quote extras])
+
+ val illegal_rel_frees =
+ (case rel_frees of
+ [] => []
+ | xs => [qty_str ^ "illegal variable(s) in the relation: " ^ commas_quote xs])
+
+ val errs = illegal_rel_vars @ dup_vs @ extra_rty_tfrees @ extra_rel_tfrees @ illegal_rel_frees
+in
+ if null errs then () else error (cat_lines errs)
+end
+
+(* check for existence of map functions *)
+fun map_check ctxt (_, (rty, _)) =
+let
+ val thy = ProofContext.theory_of ctxt
+
+ fun map_check_aux rty warns =
+ case rty of
+ Type (_, []) => warns
+ | Type (s, _) => if maps_defined thy s then warns else s::warns
+ | _ => warns
+
+ val warns = map_check_aux rty []
+in
+ if null warns then ()
+ else warning ("No map function defined for " ^ commas warns ^
+ ". This will cause problems later on.")
+end
+
+
+
+(*** interface and syntax setup ***)
+
+
+(* the ML-interface takes a list of 5-tuples consisting of:
+
+ - the name of the quotient type
+ - its free type variables (first argument)
+ - its mixfix annotation
+ - the type to be quotient
+ - the relation according to which the type is quotient
+
+ it opens a proof-state in which one has to show that the
+ relations are equivalence relations
+*)
+
+fun quotient_type quot_list lthy =
+let
+ (* sanity check *)
+ val _ = List.app sanity_check quot_list
+ val _ = List.app (map_check lthy) quot_list
+
+ fun mk_goal (rty, rel) =
+ let
+ val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
+ in
+ HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel)
+ end
+
+ val goals = map (mk_goal o snd) quot_list
+
+ fun after_qed thms lthy =
+ fold_map mk_quotient_type (quot_list ~~ thms) lthy |> snd
+in
+ theorem after_qed goals lthy
+end
+
+fun quotient_type_cmd specs lthy =
+let
+ fun parse_spec ((((vs, qty_name), mx), rty_str), rel_str) lthy =
+ let
+ (* new parsing with proper declaration *)
+ val rty = Syntax.read_typ lthy rty_str
+ val lthy1 = Variable.declare_typ rty lthy
+ val rel =
+ Syntax.parse_term lthy1 rel_str
+ |> Syntax.type_constraint (rty --> rty --> @{typ bool})
+ |> Syntax.check_term lthy1
+ val lthy2 = Variable.declare_term rel lthy1
+ in
+ (((vs, qty_name, mx), (rty, rel)), lthy2)
+ end
+
+ val (spec', lthy') = fold_map parse_spec specs lthy
+in
+ quotient_type spec' lthy'
+end
+
+local
+ structure P = OuterParse;
+in
+
+val quotspec_parser =
+ P.and_list1 ((P.type_args -- P.binding) -- P.opt_infix --
+ (P.$$$ "=" |-- P.typ) -- (P.$$$ "/" |-- P.term))
+end
+
+val _ = OuterKeyword.keyword "/"
+
+val _ =
+ OuterSyntax.local_theory_to_proof "quotient_type"
+ "quotient type definitions (require equivalence proofs)"
+ OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
+
+end; (* structure *)