Attic/Quot/quotient_typ.ML
changeset 1260 9df6144e281b
parent 1166 e860d8767d09
child 1437 45fb38a2e3f7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/Quot/quotient_typ.ML	Thu Feb 25 07:57:17 2010 +0100
@@ -0,0 +1,309 @@
+(*  Title:      quotient_typ.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Definition of a quotient type.
+
+*)
+
+signature QUOTIENT_TYPE =
+sig
+  val quotient_type: ((string list * binding * mixfix) * (typ * term)) list
+    -> Proof.context -> Proof.state
+
+  val quotient_type_cmd: ((((string list * binding) * mixfix) * string) * string) list
+    -> Proof.context -> Proof.state
+end;
+
+structure Quotient_Type: QUOTIENT_TYPE =
+struct
+
+open Quotient_Info;
+
+(* wrappers for define, note, Attrib.internal and theorem_i *)
+fun define (name, mx, rhs) lthy =
+let
+  val ((rhs, (_ , thm)), lthy') =
+     Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
+in
+  ((rhs, thm), lthy')
+end
+
+fun note (name, thm, attrs) lthy =
+let
+  val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy
+in
+  (thm', lthy')
+end
+
+fun intern_attr at = Attrib.internal (K at)
+
+fun theorem after_qed goals ctxt =
+let
+  val goals' = map (rpair []) goals
+  fun after_qed' thms = after_qed (the_single thms)
+in
+  Proof.theorem_i NONE after_qed' [goals'] ctxt
+end
+
+
+
+(*** definition of quotient types ***)
+
+val mem_def1 = @{lemma "y : S ==> S y" by (simp add: mem_def)}
+val mem_def2 = @{lemma "S y ==> y : S" by (simp add: mem_def)}
+
+(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
+fun typedef_term rel rty lthy =
+let
+  val [x, c] =
+    [("x", rty), ("c", HOLogic.mk_setT rty)]
+    |> Variable.variant_frees lthy [rel]
+    |> map Free
+in
+  lambda c (HOLogic.exists_const rty $
+     lambda x (HOLogic.mk_eq (c, (rel $ x))))
+end
+
+
+(* makes the new type definitions and proves non-emptyness *)
+fun typedef_make (vs, qty_name, mx, rel, rty) lthy =
+let
+  val typedef_tac =
+     EVERY1 (map rtac [@{thm exI}, mem_def2, @{thm exI}, @{thm refl}])
+in
+  Local_Theory.theory_result
+    (Typedef.add_typedef false NONE
+       (qty_name, vs, mx)
+          (typedef_term rel rty lthy)
+             NONE typedef_tac) lthy
+end
+
+
+(* tactic to prove the quot_type theorem for the new type *)
+fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
+let
+  val rep_thm = #Rep typedef_info RS mem_def1
+  val rep_inv = #Rep_inverse typedef_info
+  val abs_inv = mem_def2 RS #Abs_inverse typedef_info
+  val rep_inj = #Rep_inject typedef_info
+in
+  (rtac @{thm quot_type.intro} THEN' RANGE [
+    rtac equiv_thm,
+    rtac rep_thm,
+    rtac rep_inv,
+    EVERY' (map rtac [abs_inv, @{thm exI}, @{thm refl}]),
+    rtac rep_inj]) 1
+end
+
+
+(* proves the quot_type theorem for the new type *)
+fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
+let
+  val quot_type_const = Const (@{const_name "quot_type"}, dummyT)
+  val goal =
+    HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
+    |> Syntax.check_term lthy
+in
+  Goal.prove lthy [] [] goal
+    (K (typedef_quot_type_tac equiv_thm typedef_info))
+end
+
+(* proves the quotient theorem for the new type *)
+fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
+let
+  val quotient_const = Const (@{const_name "Quotient"}, dummyT)
+  val goal =
+    HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
+    |> Syntax.check_term lthy
+
+  val typedef_quotient_thm_tac =
+    EVERY1 [
+      K (rewrite_goals_tac [abs_def, rep_def]),
+      rtac @{thm quot_type.Quotient},
+      rtac quot_type_thm]
+in
+  Goal.prove lthy [] [] goal
+    (K typedef_quotient_thm_tac)
+end
+
+
+(* main function for constructing a quotient type *)
+fun mk_quotient_type (((vs, qty_name, mx), (rty, rel)), equiv_thm) lthy =
+let
+  (* generates the typedef *)
+  val ((qty_full_name, typedef_info), lthy1) = typedef_make (vs, qty_name, mx, rel, rty) lthy
+
+  (* abs and rep functions from the typedef *)
+  val Abs_ty = #abs_type typedef_info
+  val Rep_ty = #rep_type typedef_info
+  val Abs_name = #Abs_name typedef_info
+  val Rep_name = #Rep_name typedef_info
+  val Abs_const = Const (Abs_name, Rep_ty --> Abs_ty)
+  val Rep_const = Const (Rep_name, Abs_ty --> Rep_ty)
+
+  (* more useful abs and rep definitions *)
+  val abs_const = Const (@{const_name "quot_type.abs"}, dummyT )
+  val rep_const = Const (@{const_name "quot_type.rep"}, dummyT )
+  val abs_trm = Syntax.check_term lthy1 (abs_const $ rel $ Abs_const)
+  val rep_trm = Syntax.check_term lthy1 (rep_const $ Rep_const)
+  val abs_name = Binding.prefix_name "abs_" qty_name
+  val rep_name = Binding.prefix_name "rep_" qty_name
+
+  val ((abs, abs_def), lthy2) = define (abs_name, NoSyn, abs_trm) lthy1
+  val ((rep, rep_def), lthy3) = define (rep_name, NoSyn, rep_trm) lthy2
+
+  (* quot_type theorem *)
+  val quot_thm = typedef_quot_type_thm (rel, Abs_const, Rep_const, equiv_thm, typedef_info) lthy3
+
+  (* quotient theorem *)
+  val quotient_thm = typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_thm) lthy3
+  val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name
+
+  (* name equivalence theorem *)
+  val equiv_thm_name = Binding.suffix_name "_equivp" qty_name
+
+  (* storing the quot-info *)
+  fun qinfo phi = transform_quotdata phi
+    {qtyp = Abs_ty, rtyp = rty, equiv_rel = rel, equiv_thm = equiv_thm}
+  val lthy4 = Local_Theory.declaration true
+    (fn phi => quotdata_update_gen qty_full_name (qinfo phi)) lthy3
+in
+  lthy4
+  |> note (quotient_thm_name, quotient_thm, [intern_attr quotient_rules_add])
+  ||>> note (equiv_thm_name, equiv_thm, [intern_attr equiv_rules_add])
+end
+
+
+(* sanity checks for the quotient type specifications *)
+fun sanity_check ((vs, qty_name, _), (rty, rel)) =
+let
+  val rty_tfreesT = map fst (Term.add_tfreesT rty [])
+  val rel_tfrees = map fst (Term.add_tfrees rel [])
+  val rel_frees = map fst (Term.add_frees rel [])
+  val rel_vars = Term.add_vars rel []
+  val rel_tvars = Term.add_tvars rel []
+  val qty_str = Binding.str_of qty_name ^ ": "
+
+  val illegal_rel_vars =
+    if null rel_vars andalso null rel_tvars then []
+    else [qty_str ^ "illegal schematic variable(s) in the relation."]
+
+  val dup_vs =
+    (case duplicates (op =) vs of
+       [] => []
+     | dups => [qty_str ^ "duplicate type variable(s) on the lhs: " ^ commas_quote dups])
+
+  val extra_rty_tfrees =
+    (case subtract (op =) vs rty_tfreesT of
+       [] => []
+     | extras => [qty_str ^ "extra type variable(s) on the lhs: " ^ commas_quote extras])
+
+  val extra_rel_tfrees =
+    (case subtract (op =) vs rel_tfrees of
+       [] => []
+     | extras => [qty_str ^ "extra type variable(s) in the relation: " ^ commas_quote extras])
+
+  val illegal_rel_frees =
+    (case rel_frees of
+      [] => []
+    | xs => [qty_str ^ "illegal variable(s) in the relation: " ^ commas_quote xs])
+
+  val errs = illegal_rel_vars @ dup_vs @ extra_rty_tfrees @ extra_rel_tfrees @ illegal_rel_frees
+in
+  if null errs then () else error (cat_lines errs)
+end
+
+(* check for existence of map functions *)
+fun map_check ctxt (_, (rty, _)) =
+let
+  val thy = ProofContext.theory_of ctxt
+
+  fun map_check_aux rty warns =
+    case rty of
+      Type (_, []) => warns
+    | Type (s, _) => if maps_defined thy s then warns else s::warns
+    | _ => warns
+
+  val warns = map_check_aux rty []
+in
+  if null warns then ()
+  else warning ("No map function defined for " ^ commas warns ^
+    ". This will cause problems later on.")
+end
+
+
+
+(*** interface and syntax setup ***)
+
+
+(* the ML-interface takes a list of 5-tuples consisting of:
+
+ - the name of the quotient type
+ - its free type variables (first argument)
+ - its mixfix annotation
+ - the type to be quotient
+ - the relation according to which the type is quotient
+
+ it opens a proof-state in which one has to show that the
+ relations are equivalence relations
+*)
+
+fun quotient_type quot_list lthy =
+let
+  (* sanity check *)
+  val _ = List.app sanity_check quot_list
+  val _ = List.app (map_check lthy) quot_list
+
+  fun mk_goal (rty, rel) =
+  let
+    val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
+  in
+    HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel)
+  end
+
+  val goals = map (mk_goal o snd) quot_list
+
+  fun after_qed thms lthy =
+    fold_map mk_quotient_type (quot_list ~~ thms) lthy |> snd
+in
+  theorem after_qed goals lthy
+end
+
+fun quotient_type_cmd specs lthy =
+let
+  fun parse_spec ((((vs, qty_name), mx), rty_str), rel_str) lthy =
+  let
+    (* new parsing with proper declaration *)
+    val rty = Syntax.read_typ lthy rty_str
+    val lthy1 = Variable.declare_typ rty lthy
+    val rel = 
+      Syntax.parse_term lthy1 rel_str
+      |> Syntax.type_constraint (rty --> rty --> @{typ bool}) 
+      |> Syntax.check_term lthy1 
+    val lthy2 = Variable.declare_term rel lthy1
+  in
+    (((vs, qty_name, mx), (rty, rel)), lthy2)
+  end
+
+  val (spec', lthy') = fold_map parse_spec specs lthy
+in
+  quotient_type spec' lthy'
+end
+
+local
+  structure P = OuterParse;
+in
+
+val quotspec_parser =
+  P.and_list1 ((P.type_args -- P.binding) -- P.opt_infix -- 
+    (P.$$$ "=" |-- P.typ) -- (P.$$$ "/" |-- P.term))
+end
+
+val _ = OuterKeyword.keyword "/"
+
+val _ =
+  OuterSyntax.local_theory_to_proof "quotient_type"
+    "quotient type definitions (require equivalence proofs)"
+       OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
+
+end; (* structure *)