Attic/Quot/quotient_term.ML
changeset 1260 9df6144e281b
parent 1188 e5413596e098
child 1438 61671de8a545
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/Quot/quotient_term.ML	Thu Feb 25 07:57:17 2010 +0100
@@ -0,0 +1,786 @@
+(*  Title:      quotient_term.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Constructs terms corresponding to goals from
+    lifting theorems to quotient types.
+*)
+
+signature QUOTIENT_TERM =
+sig
+  exception LIFT_MATCH of string
+
+  datatype flag = AbsF | RepF
+
+  val absrep_fun: flag -> Proof.context -> typ * typ -> term
+  val absrep_fun_chk: flag -> Proof.context -> typ * typ -> term
+
+  (* Allows Nitpick to represent quotient types as single elements from raw type *)
+  val absrep_const_chk: flag -> Proof.context -> string -> term
+
+  val equiv_relation: Proof.context -> typ * typ -> term
+  val equiv_relation_chk: Proof.context -> typ * typ -> term
+
+  val regularize_trm: Proof.context -> term * term -> term
+  val regularize_trm_chk: Proof.context -> term * term -> term
+
+  val inj_repabs_trm: Proof.context -> term * term -> term
+  val inj_repabs_trm_chk: Proof.context -> term * term -> term
+
+  val quotient_lift_const: string * term -> local_theory -> term
+  val quotient_lift_all: Proof.context -> term -> term
+end;
+
+structure Quotient_Term: QUOTIENT_TERM =
+struct
+
+open Quotient_Info;
+
+exception LIFT_MATCH of string
+
+
+
+(*** Aggregate Rep/Abs Function ***)
+
+
+(* The flag RepF is for types in negative position; AbsF is for types
+   in positive position. Because of this, function types need to be
+   treated specially, since there the polarity changes.
+*)
+
+datatype flag = AbsF | RepF
+
+fun negF AbsF = RepF
+  | negF RepF = AbsF
+
+fun is_identity (Const (@{const_name "id"}, _)) = true
+  | is_identity _ = false
+
+fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
+
+fun mk_fun_compose flag (trm1, trm2) =
+  case flag of
+    AbsF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
+  | RepF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
+
+fun get_mapfun ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("No map function for type " ^ quote s ^ " found.")
+  val mapfun = #mapfun (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
+in
+  Const (mapfun, dummyT)
+end
+
+(* makes a Free out of a TVar *)
+fun mk_Free (TVar ((x, i), _)) = Free (unprefix "'" x ^ string_of_int i, dummyT)
+
+(* produces an aggregate map function for the
+   rty-part of a quotient definition; abstracts
+   over all variables listed in vs (these variables
+   correspond to the type variables in rty)
+
+   for example for: (?'a list * ?'b)
+   it produces:     %a b. prod_map (map a) b
+*)
+fun mk_mapfun ctxt vs rty =
+let
+  val vs' = map (mk_Free) vs
+
+  fun mk_mapfun_aux rty =
+    case rty of
+      TVar _ => mk_Free rty
+    | Type (_, []) => mk_identity rty
+    | Type (s, tys) => list_comb (get_mapfun ctxt s, map mk_mapfun_aux tys)
+    | _ => raise LIFT_MATCH "mk_mapfun (default)"
+in
+  fold_rev Term.lambda vs' (mk_mapfun_aux rty)
+end
+
+(* looks up the (varified) rty and qty for
+   a quotient definition
+*)
+fun get_rty_qty ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("No quotient type " ^ quote s ^ " found.")
+  val qdata = (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
+in
+  (#rtyp qdata, #qtyp qdata)
+end
+
+(* takes two type-environments and looks
+   up in both of them the variable v, which
+   must be listed in the environment
+*)
+fun double_lookup rtyenv qtyenv v =
+let
+  val v' = fst (dest_TVar v)
+in
+  (snd (the (Vartab.lookup rtyenv v')), snd (the (Vartab.lookup qtyenv v')))
+end
+
+(* matches a type pattern with a type *)
+fun match ctxt err ty_pat ty =
+let
+  val thy = ProofContext.theory_of ctxt
+in
+  Sign.typ_match thy (ty_pat, ty) Vartab.empty
+  handle MATCH_TYPE => err ctxt ty_pat ty
+end
+
+(* produces the rep or abs constant for a qty *)
+fun absrep_const flag ctxt qty_str =
+let
+  val thy = ProofContext.theory_of ctxt
+  val qty_name = Long_Name.base_name qty_str
+in
+  case flag of
+    AbsF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
+  | RepF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
+end
+
+(* Lets Nitpick represent elements of quotient types as elements of the raw type *)
+fun absrep_const_chk flag ctxt qty_str =
+  Syntax.check_term ctxt (absrep_const flag ctxt qty_str)
+
+fun absrep_match_err ctxt ty_pat ty =
+let
+  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
+  val ty_str = Syntax.string_of_typ ctxt ty
+in
+  raise LIFT_MATCH (space_implode " "
+    ["absrep_fun (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
+end
+
+
+(** generation of an aggregate absrep function **)
+
+(* - In case of equal types we just return the identity.
+
+   - In case of TFrees we also return the identity.
+
+   - In case of function types we recurse taking
+     the polarity change into account.
+
+   - If the type constructors are equal, we recurse for the
+     arguments and build the appropriate map function.
+
+   - If the type constructors are unequal, there must be an
+     instance of quotient types:
+
+       - we first look up the corresponding rty_pat and qty_pat
+         from the quotient definition; the arguments of qty_pat
+         must be some distinct TVars
+       - we then match the rty_pat with rty and qty_pat with qty;
+         if matching fails the types do not correspond -> error
+       - the matching produces two environments; we look up the
+         assignments for the qty_pat variables and recurse on the
+         assignments
+       - we prefix the aggregate map function for the rty_pat,
+         which is an abstraction over all type variables
+       - finally we compose the result with the appropriate
+         absrep function in case at least one argument produced
+         a non-identity function /
+         otherwise we just return the appropriate absrep
+         function
+
+     The composition is necessary for types like
+
+        ('a list) list / ('a foo) foo
+
+     The matching is necessary for types like
+
+        ('a * 'a) list / 'a bar
+
+     The test is necessary in order to eliminate superfluous
+     identity maps.
+*)
+
+fun absrep_fun flag ctxt (rty, qty) =
+  if rty = qty
+  then mk_identity rty
+  else
+    case (rty, qty) of
+      (Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
+        let
+          val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
+          val arg2 = absrep_fun flag ctxt (ty2, ty2')
+        in
+          list_comb (get_mapfun ctxt "fun", [arg1, arg2])
+        end
+    | (Type (s, tys), Type (s', tys')) =>
+        if s = s'
+        then
+           let
+             val args = map (absrep_fun flag ctxt) (tys ~~ tys')
+           in
+             list_comb (get_mapfun ctxt s, args)
+           end
+        else
+           let
+             val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
+             val rtyenv = match ctxt absrep_match_err rty_pat rty
+             val qtyenv = match ctxt absrep_match_err qty_pat qty
+             val args_aux = map (double_lookup rtyenv qtyenv) vs
+             val args = map (absrep_fun flag ctxt) args_aux
+             val map_fun = mk_mapfun ctxt vs rty_pat
+             val result = list_comb (map_fun, args)
+           in
+             if forall is_identity args
+             then absrep_const flag ctxt s'
+             else mk_fun_compose flag (absrep_const flag ctxt s', result)
+           end
+    | (TFree x, TFree x') =>
+        if x = x'
+        then mk_identity rty
+        else raise (LIFT_MATCH "absrep_fun (frees)")
+    | (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
+    | _ => raise (LIFT_MATCH "absrep_fun (default)")
+
+fun absrep_fun_chk flag ctxt (rty, qty) =
+  absrep_fun flag ctxt (rty, qty)
+  |> Syntax.check_term ctxt
+
+
+
+
+(*** Aggregate Equivalence Relation ***)
+
+
+(* works very similar to the absrep generation,
+   except there is no need for polarities
+*)
+
+(* instantiates TVars so that the term is of type ty *)
+fun force_typ ctxt trm ty =
+let
+  val thy = ProofContext.theory_of ctxt
+  val trm_ty = fastype_of trm
+  val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
+in
+  map_types (Envir.subst_type ty_inst) trm
+end
+
+fun is_eq (Const (@{const_name "op ="}, _)) = true
+  | is_eq _ = false
+
+fun mk_rel_compose (trm1, trm2) =
+  Const (@{const_name "rel_conj"}, dummyT) $ trm1 $ trm2
+
+fun get_relmap ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("get_relmap (no relation map function found for type " ^ s ^ ")")
+  val relmap = #relmap (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
+in
+  Const (relmap, dummyT)
+end
+
+fun mk_relmap ctxt vs rty =
+let
+  val vs' = map (mk_Free) vs
+
+  fun mk_relmap_aux rty =
+    case rty of
+      TVar _ => mk_Free rty
+    | Type (_, []) => HOLogic.eq_const rty
+    | Type (s, tys) => list_comb (get_relmap ctxt s, map mk_relmap_aux tys)
+    | _ => raise LIFT_MATCH ("mk_relmap (default)")
+in
+  fold_rev Term.lambda vs' (mk_relmap_aux rty)
+end
+
+fun get_equiv_rel ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("get_quotdata (no quotient found for type " ^ s ^ ")")
+in
+  #equiv_rel (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
+end
+
+fun equiv_match_err ctxt ty_pat ty =
+let
+  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
+  val ty_str = Syntax.string_of_typ ctxt ty
+in
+  raise LIFT_MATCH (space_implode " "
+    ["equiv_relation (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
+end
+
+(* builds the aggregate equivalence relation
+   that will be the argument of Respects
+*)
+fun equiv_relation ctxt (rty, qty) =
+  if rty = qty
+  then HOLogic.eq_const rty
+  else
+    case (rty, qty) of
+      (Type (s, tys), Type (s', tys')) =>
+       if s = s'
+       then
+         let
+           val args = map (equiv_relation ctxt) (tys ~~ tys')
+         in
+           list_comb (get_relmap ctxt s, args)
+         end
+       else
+         let
+           val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
+           val rtyenv = match ctxt equiv_match_err rty_pat rty
+           val qtyenv = match ctxt equiv_match_err qty_pat qty
+           val args_aux = map (double_lookup rtyenv qtyenv) vs
+           val args = map (equiv_relation ctxt) args_aux
+           val rel_map = mk_relmap ctxt vs rty_pat
+           val result = list_comb (rel_map, args)
+           val eqv_rel = get_equiv_rel ctxt s'
+           val eqv_rel' = force_typ ctxt eqv_rel ([rty, rty] ---> @{typ bool})
+         in
+           if forall is_eq args
+           then eqv_rel'
+           else mk_rel_compose (result, eqv_rel')
+         end
+      | _ => HOLogic.eq_const rty
+
+fun equiv_relation_chk ctxt (rty, qty) =
+  equiv_relation ctxt (rty, qty)
+  |> Syntax.check_term ctxt
+
+
+
+(*** Regularization ***)
+
+(* Regularizing an rtrm means:
+
+ - Quantifiers over types that need lifting are replaced
+   by bounded quantifiers, for example:
+
+      All P  ----> All (Respects R) P
+
+   where the aggregate relation R is given by the rty and qty;
+
+ - Abstractions over types that need lifting are replaced
+   by bounded abstractions, for example:
+
+      %x. P  ----> Ball (Respects R) %x. P
+
+ - Equalities over types that need lifting are replaced by
+   corresponding equivalence relations, for example:
+
+      A = B  ----> R A B
+
+   or
+
+      A = B  ----> (R ===> R) A B
+
+   for more complicated types of A and B
+
+
+ The regularize_trm accepts raw theorems in which equalities
+ and quantifiers match exactly the ones in the lifted theorem
+ but also accepts partially regularized terms.
+
+ This means that the raw theorems can have:
+   Ball (Respects R),  Bex (Respects R), Bex1_rel (Respects R), Babs, R
+ in the places where:
+   All, Ex, Ex1, %, (op =)
+ is required the lifted theorem.
+
+*)
+
+val mk_babs = Const (@{const_name Babs}, dummyT)
+val mk_ball = Const (@{const_name Ball}, dummyT)
+val mk_bex  = Const (@{const_name Bex}, dummyT)
+val mk_bex1_rel = Const (@{const_name Bex1_rel}, dummyT)
+val mk_resp = Const (@{const_name Respects}, dummyT)
+
+(* - applies f to the subterm of an abstraction,
+     otherwise to the given term,
+   - used by regularize, therefore abstracted
+     variables do not have to be treated specially
+*)
+fun apply_subt f (trm1, trm2) =
+  case (trm1, trm2) of
+    (Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
+  | _ => f (trm1, trm2)
+
+fun term_mismatch str ctxt t1 t2 =
+let
+  val t1_str = Syntax.string_of_term ctxt t1
+  val t2_str = Syntax.string_of_term ctxt t2
+  val t1_ty_str = Syntax.string_of_typ ctxt (fastype_of t1)
+  val t2_ty_str = Syntax.string_of_typ ctxt (fastype_of t2)
+in
+  raise LIFT_MATCH (cat_lines [str, t1_str ^ "::" ^ t1_ty_str, t2_str ^ "::" ^ t2_ty_str])
+end
+
+(* the major type of All and Ex quantifiers *)
+fun qnt_typ ty = domain_type (domain_type ty)
+
+(* Checks that two types match, for example:
+     rty -> rty   matches   qty -> qty *)
+fun matches_typ thy rT qT =
+  if rT = qT then true else
+  case (rT, qT) of
+    (Type (rs, rtys), Type (qs, qtys)) =>
+      if rs = qs then
+        if length rtys <> length qtys then false else
+        forall (fn x => x = true) (map2 (matches_typ thy) rtys qtys)
+      else
+        (case Quotient_Info.quotdata_lookup_raw thy qs of
+          SOME quotinfo => Sign.typ_instance thy (rT, #rtyp quotinfo)
+        | NONE => false)
+  | _ => false
+
+
+(* produces a regularized version of rtrm
+
+   - the result might contain dummyTs
+
+   - for regularisation we do not need any
+     special treatment of bound variables
+*)
+fun regularize_trm ctxt (rtrm, qtrm) =
+  case (rtrm, qtrm) of
+    (Abs (x, ty, t), Abs (_, ty', t')) =>
+       let
+         val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
+       in
+         if ty = ty' then subtrm
+         else mk_babs $ (mk_resp $ equiv_relation ctxt (ty, ty')) $ subtrm
+       end
+  | (Const (@{const_name "Babs"}, T) $ resrel $ (t as (Abs (_, ty, _))), t' as (Abs (_, ty', _))) =>
+       let
+         val subtrm = regularize_trm ctxt (t, t')
+         val needres = mk_resp $ equiv_relation_chk ctxt (ty, ty')
+       in
+         if resrel <> needres
+         then term_mismatch "regularize (Babs)" ctxt resrel needres
+         else mk_babs $ resrel $ subtrm
+       end
+
+  | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+       in
+         if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
+         else mk_ball $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+       in
+         if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
+         else mk_bex $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ex1"}, ty) $ (Abs (_, _,
+      (Const (@{const_name "op &"}, _) $ (Const (@{const_name "op :"}, _) $ _ $
+        (Const (@{const_name "Respects"}, _) $ resrel)) $ (t $ _)))),
+     Const (@{const_name "Ex1"}, ty') $ t') =>
+       let
+         val t_ = incr_boundvars (~1) t
+         val subtrm = apply_subt (regularize_trm ctxt) (t_, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Bex1)" ctxt resrel needrel
+         else mk_bex1_rel $ resrel $ subtrm
+       end
+
+  | (Const (@{const_name "Ex1"}, ty) $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+       in
+         if ty = ty' then Const (@{const_name "Ex1"}, ty) $ subtrm
+         else mk_bex1_rel $ (equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ball"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
+     Const (@{const_name "All"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Ball)" ctxt resrel needrel
+         else mk_ball $ (mk_resp $ resrel) $ subtrm
+       end
+
+  | (Const (@{const_name "Bex"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
+     Const (@{const_name "Ex"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Bex)" ctxt resrel needrel
+         else mk_bex $ (mk_resp $ resrel) $ subtrm
+       end
+
+  | (Const (@{const_name "Bex1_rel"}, ty) $ resrel $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Bex1_res)" ctxt resrel needrel
+         else mk_bex1_rel $ resrel $ subtrm
+       end
+
+  | (* equalities need to be replaced by appropriate equivalence relations *)
+    (Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
+         if ty = ty' then rtrm
+         else equiv_relation ctxt (domain_type ty, domain_type ty')
+
+  | (* in this case we just check whether the given equivalence relation is correct *)
+    (rel, Const (@{const_name "op ="}, ty')) =>
+       let
+         val rel_ty = fastype_of rel
+         val rel' = equiv_relation_chk ctxt (domain_type rel_ty, domain_type ty')
+       in
+         if rel' aconv rel then rtrm
+         else term_mismatch "regularise (relation mismatch)" ctxt rel rel'
+       end
+
+  | (_, Const _) =>
+       let
+         val thy = ProofContext.theory_of ctxt
+         fun same_const (Const (s, T)) (Const (s', T')) = (s = s') andalso matches_typ thy T T'
+           | same_const _ _ = false
+       in
+         if same_const rtrm qtrm then rtrm
+         else
+           let
+             val rtrm' = #rconst (qconsts_lookup thy qtrm)
+               handle Quotient_Info.NotFound => term_mismatch "regularize(constant notfound)" ctxt rtrm qtrm
+           in
+             if Pattern.matches thy (rtrm', rtrm)
+             then rtrm else term_mismatch "regularize(constant mismatch)" ctxt rtrm qtrm
+           end
+       end
+
+  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, Abs(v1', ty', s1))),
+     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , Abs(v2', _  , s2)))) =>
+       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, Abs (v1', ty', regularize_trm ctxt (s1, s2)))
+
+  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, s1)),
+     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , s2))) =>
+       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, regularize_trm ctxt (s1, s2))
+
+  | (t1 $ t2, t1' $ t2') =>
+       regularize_trm ctxt (t1, t1') $ regularize_trm ctxt (t2, t2')
+
+  | (Bound i, Bound i') =>
+       if i = i' then rtrm
+       else raise (LIFT_MATCH "regularize (bounds mismatch)")
+
+  | _ =>
+       let
+         val rtrm_str = Syntax.string_of_term ctxt rtrm
+         val qtrm_str = Syntax.string_of_term ctxt qtrm
+       in
+         raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
+       end
+
+fun regularize_trm_chk ctxt (rtrm, qtrm) =
+  regularize_trm ctxt (rtrm, qtrm)
+  |> Syntax.check_term ctxt
+
+
+
+(*** Rep/Abs Injection ***)
+
+(*
+Injection of Rep/Abs means:
+
+  For abstractions:
+
+  * If the type of the abstraction needs lifting, then we add Rep/Abs
+    around the abstraction; otherwise we leave it unchanged.
+
+  For applications:
+
+  * If the application involves a bounded quantifier, we recurse on
+    the second argument. If the application is a bounded abstraction,
+    we always put an Rep/Abs around it (since bounded abstractions
+    are assumed to always need lifting). Otherwise we recurse on both
+    arguments.
+
+  For constants:
+
+  * If the constant is (op =), we leave it always unchanged.
+    Otherwise the type of the constant needs lifting, we put
+    and Rep/Abs around it.
+
+  For free variables:
+
+  * We put a Rep/Abs around it if the type needs lifting.
+
+  Vars case cannot occur.
+*)
+
+fun mk_repabs ctxt (T, T') trm =
+  absrep_fun RepF ctxt (T, T') $ (absrep_fun AbsF ctxt (T, T') $ trm)
+
+fun inj_repabs_err ctxt msg rtrm qtrm =
+let
+  val rtrm_str = Syntax.string_of_term ctxt rtrm
+  val qtrm_str = Syntax.string_of_term ctxt qtrm
+in
+  raise LIFT_MATCH (space_implode " " [msg, quote rtrm_str, "and", quote qtrm_str])
+end
+
+
+(* bound variables need to be treated properly,
+   as the type of subterms needs to be calculated   *)
+fun inj_repabs_trm ctxt (rtrm, qtrm) =
+ case (rtrm, qtrm) of
+    (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
+       Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
+
+  | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
+       Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
+
+  | (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
+      let
+        val rty = fastype_of rtrm
+        val qty = fastype_of qtrm
+      in
+        mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
+      end
+
+  | (Abs (x, T, t), Abs (x', T', t')) =>
+      let
+        val rty = fastype_of rtrm
+        val qty = fastype_of qtrm
+        val (y, s) = Term.dest_abs (x, T, t)
+        val (_, s') = Term.dest_abs (x', T', t')
+        val yvar = Free (y, T)
+        val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
+      in
+        if rty = qty then result
+        else mk_repabs ctxt (rty, qty) result
+      end
+
+  | (t $ s, t' $ s') =>
+       (inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))
+
+  | (Free (_, T), Free (_, T')) =>
+        if T = T' then rtrm
+        else mk_repabs ctxt (T, T') rtrm
+
+  | (_, Const (@{const_name "op ="}, _)) => rtrm
+
+  | (_, Const (_, T')) =>
+      let
+        val rty = fastype_of rtrm
+      in
+        if rty = T' then rtrm
+        else mk_repabs ctxt (rty, T') rtrm
+      end
+
+  | _ => inj_repabs_err ctxt "injection (default):" rtrm qtrm
+
+fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
+  inj_repabs_trm ctxt (rtrm, qtrm)
+  |> Syntax.check_term ctxt
+
+
+
+(*** Wrapper for automatically transforming an rthm into a qthm ***)
+
+(* subst_tys takes a list of (rty, qty) substitution pairs
+   and replaces all occurences of rty in the given type
+   by appropriate qty, with substitution *)
+fun subst_ty thy ty (rty, qty) r =
+  if r <> NONE then r else
+  case try (Sign.typ_match thy (rty, ty)) Vartab.empty of
+    SOME inst => SOME (Envir.subst_type inst qty)
+  | NONE => NONE
+fun subst_tys thy substs ty =
+  case fold (subst_ty thy ty) substs NONE of
+    SOME ty => ty
+  | NONE =>
+      (case ty of
+        Type (s, tys) => Type (s, map (subst_tys thy substs) tys)
+      | x => x)
+
+(* subst_trms takes a list of (rtrm, qtrm) substitution pairs
+   and if the given term matches any of the raw terms it
+   returns the appropriate qtrm instantiated. If none of
+   them matched it returns NONE. *)
+fun subst_trm thy t (rtrm, qtrm) s =
+  if s <> NONE then s else
+    case try (Pattern.match thy (rtrm, t)) (Vartab.empty, Vartab.empty) of
+      SOME inst => SOME (Envir.subst_term inst qtrm)
+    | NONE => NONE;
+fun subst_trms thy substs t = fold (subst_trm thy t) substs NONE
+
+(* prepares type and term substitution pairs to be used by above
+   functions that let replace all raw constructs by appropriate
+   lifted counterparts. *)
+fun get_ty_trm_substs ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val quot_infos  = Quotient_Info.quotdata_dest ctxt
+  val const_infos = Quotient_Info.qconsts_dest ctxt
+  val ty_substs = map (fn ri => (#rtyp ri, #qtyp ri)) quot_infos
+  val const_substs = map (fn ci => (#rconst ci, #qconst ci)) const_infos
+  fun rel_eq rel = HOLogic.eq_const (subst_tys thy ty_substs (domain_type (fastype_of rel)))
+  val rel_substs = map (fn ri => (#equiv_rel ri, rel_eq (#equiv_rel ri))) quot_infos
+in
+  (ty_substs, const_substs @ rel_substs)
+end
+
+fun quotient_lift_const (b, t) ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val (ty_substs, _) = get_ty_trm_substs ctxt;
+  val (_, ty) = dest_Const t;
+  val nty = subst_tys thy ty_substs ty;
+in
+  Free(b, nty)
+end
+
+(*
+Takes a term and
+
+* replaces raw constants by the quotient constants
+
+* replaces equivalence relations by equalities
+
+* replaces raw types by the quotient types
+
+*)
+
+fun quotient_lift_all ctxt t =
+let
+  val thy = ProofContext.theory_of ctxt
+  val (ty_substs, substs) = get_ty_trm_substs ctxt
+  fun lift_aux t =
+    case subst_trms thy substs t of
+      SOME x => x
+    | NONE =>
+      (case t of
+        a $ b => lift_aux a $ lift_aux b
+      | Abs(a, ty, s) =>
+          let
+            val (y, s') = Term.dest_abs (a, ty, s)
+            val nty = subst_tys thy ty_substs ty
+          in
+            Abs(y, nty, abstract_over (Free (y, nty), lift_aux s'))
+          end
+      | Free(n, ty) => Free(n, subst_tys thy ty_substs ty)
+      | Var(n, ty) => Var(n, subst_tys thy ty_substs ty)
+      | Bound i => Bound i
+      | Const(s, ty) => Const(s, subst_tys thy ty_substs ty))
+in
+  lift_aux t
+end
+
+
+end; (* structure *)
+
+
+