FSet.thy
changeset 432 9c33c0809733
parent 423 2f0ad33f0241
child 433 1c245f6911dd
--- a/FSet.thy	Sat Nov 28 04:02:54 2009 +0100
+++ b/FSet.thy	Sat Nov 28 05:29:30 2009 +0100
@@ -307,7 +307,8 @@
 ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] rty [quot] rsp_thms defs *}
 
 lemma "IN x EMPTY = False"
-by (tactic {* lift_tac_fset @{context} @{thm m1} 1 *})
+apply (tactic {* lift_tac_fset @{context} @{thm m1} 1 *})
+done
 
 lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
 by (tactic {* lift_tac_fset @{context} @{thm m2} 1 *})
@@ -347,7 +348,7 @@
 
 lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
-apply(tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
+apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
 prefer 2
 apply(rule cheat)
 apply(tactic {* r_mk_comb_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
@@ -449,7 +450,7 @@
 (* Construction site starts here *)
 lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
 apply (tactic {* procedure_tac @{context} @{thm list_induct_part} 1 *})
-apply (tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
+apply (tactic {* regularize_tac @{context} [rel_eqv] 1 *})
 apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
 apply (rule FUN_QUOTIENT)
 apply (rule FUN_QUOTIENT)