--- a/QuotMain.thy Tue Oct 13 13:37:07 2009 +0200
+++ b/QuotMain.thy Tue Oct 13 18:01:54 2009 +0200
@@ -327,13 +327,9 @@
definition
"(x : p) \<Longrightarrow> (Babs p m x = m x)"
-print_theorems
-
-thm Ball_def
+(*definition BAll :: "('a \<Rightarrow> prop) \<Rightarrow> ('a \<Rightarrow> prop) \<Rightarrow> prop" where
+ "BAll (R :: 'a \<Rightarrow> prop) (P :: 'a \<Rightarrow> prop) \<equiv> (\<And>x. (PROP R x \<Longrightarrow> PROP P x))"*)
-definition
- "BAll A P \<equiv> (\<And>x. x \<in> A \<Longrightarrow> P x)"
-thm BAll_def
ML {*
(* trm \<Rightarrow> new_trm *)
@@ -385,22 +381,63 @@
in
Term.lambda_name (x, v) rec_term
end
+ | ((Const (@{const_name "Ex"}, _)) $ (Abs (x, T, t))) =>
+ if T = rty then let
+ val ([x'], lthy2) = Variable.variant_fixes [x] lthy;
+ val v = Free (x', rty);
+ val t' = subst_bound (v, t);
+ val rec_term = regularise t' rty rel lthy2;
+ val lam_term = Term.lambda_name (x, v) rec_term;
+ val sub_res_term = tyRel T rty rel lthy;
+ val respects = Const (@{const_name Respects}, (fastype_of sub_res_term) --> T --> @{typ bool});
+ val res_term = respects $ sub_res_term;
+ val ty = fastype_of lam_term;
+ val rall = Const (@{const_name Bex}, (fastype_of res_term) --> ty --> @{typ bool});
+ val rall_term = (rall $ res_term) $ lam_term;
+ in
+ rall_term
+ end else let
+ val ([x'], lthy2) = Variable.variant_fixes [x] lthy;
+ val v = Free (x', rty);
+ val t' = subst_bound (v, t);
+ val rec_term = regularise t' rty rel lthy2;
+ in
+ Term.lambda_name (x, v) rec_term
+ end
| _ => trm
*}
-term "Ball"
-term "Ball (Respects (RR)) (\<lambda>x :: trm. true)"
ML {*
cterm_of @{theory} (regularise @{term "\<lambda>x :: trm. x"} @{typ "trm"} @{term "RR"} @{context});
- cterm_of @{theory} (regularise @{term "\<forall>x :: trm. true"} @{typ "trm"} @{term "RR"} @{context})
+ cterm_of @{theory} (regularise @{term "\<forall>x :: trm. P x"} @{typ "trm"} @{term "RR"} @{context});
+ cterm_of @{theory} (regularise @{term "\<exists>x :: trm. P x"} @{typ "trm"} @{term "RR"} @{context})
+*}
+
+
+term Respects
+
+ML {*
+fun atomize_thm t =
+ MetaSimplifier.rewrite_rule [ObjectLogic.atomize (cterm_of @{theory} (prop_of t))] t
*}
+ML {*
+fun meta_quantify t =
+ let
+ val vars = Term.add_vars (prop_of t) [];
+ val cvars = map (fn x => cterm_of @{theory} (Var x)) vars
+ in
+ fold forall_intr cvars t
+ end
+*}
+
+ML {* atomize_thm (meta_quantify @{thm list.induct}) *}
+
(*fun prove_reg trm \<Rightarrow> thm (we might need some facts to do this)
trm == new_trm
*)
-thm list.induct
text {* produces the definition for a lifted constant *}
@@ -1079,6 +1116,14 @@
thm list.induct
+ML {* val li = atomize_thm (meta_quantify @{thm list.induct}) *}
+
+ML {* (* Doesn't recognize that 'a list = '?a list *)
+ cterm_of @{theory} (regularise (prop_of li) @{typ "'a List.list"} @{term "op \<approx>"} @{context})
+*}
+
+
+
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list.induct}))
*}