Nominal/nominal_dt_alpha.ML
changeset 2476 8f8652a8107f
parent 2475 486d4647bb37
child 2477 2f289c1f6cf1
--- a/Nominal/nominal_dt_alpha.ML	Fri Sep 10 09:17:40 2010 +0800
+++ b/Nominal/nominal_dt_alpha.ML	Sat Sep 11 05:56:49 2010 +0800
@@ -45,62 +45,62 @@
 
 (* construct the compound terms for prod_fv and prod_alpha *)
 fun mk_prod_fv (t1, t2) =
-let
-  val ty1 = fastype_of t1
-  val ty2 = fastype_of t2 
-  val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
-in
-  Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
-end
+  let
+    val ty1 = fastype_of t1
+    val ty2 = fastype_of t2 
+    val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
+  in
+    Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
+  end
 
 fun mk_prod_alpha (t1, t2) =
-let
-  val ty1 = fastype_of t1
-  val ty2 = fastype_of t2 
-  val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
-  val resT = [prodT, prodT] ---> @{typ "bool"}
-in
-  Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
-end
+  let
+    val ty1 = fastype_of t1
+    val ty2 = fastype_of t2 
+    val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
+    val resT = [prodT, prodT] ---> @{typ "bool"}
+  in
+    Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
+  end
 
 (* generates the compound binder terms *)
 fun mk_binders lthy bmode args binders = 
-let  
-  fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
-    | bind_set _ args (SOME bn, i) = bn $ (nth args i)
-  fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
-    | bind_lst _ args (SOME bn, i) = bn $ (nth args i)
+  let  
+    fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
+      | bind_set _ args (SOME bn, i) = bn $ (nth args i)
+    fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
+      | bind_lst _ args (SOME bn, i) = bn $ (nth args i)
 
-  val (combine_fn, bind_fn) =
-    case bmode of
-      Lst => (mk_append, bind_lst) 
-    | Set => (mk_union,  bind_set)
-    | Res => (mk_union,  bind_set)
-in
-  binders
-  |> map (bind_fn lthy args)
-  |> foldl1 combine_fn 
-end
+    val (combine_fn, bind_fn) =
+      case bmode of
+        Lst => (mk_append, bind_lst) 
+      | Set => (mk_union,  bind_set)
+      | Res => (mk_union,  bind_set)
+  in
+    binders
+    |> map (bind_fn lthy args)
+    |> foldl1 combine_fn 
+  end
 
 (* produces the term for an alpha with abstraction *)
 fun mk_alpha_term bmode fv alpha args args' binders binders' =
-let
-  val (alpha_name, binder_ty) = 
-    case bmode of
-      Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
-    | Set => (@{const_name "alpha_set"}, @{typ "atom set"})
-    | Res => (@{const_name "alpha_res"}, @{typ "atom set"})
-  val ty = fastype_of args
-  val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
-  val alpha_ty = [ty, ty] ---> @{typ "bool"}
-  val fv_ty = ty --> @{typ "atom set"}
-  val pair_lhs = HOLogic.mk_prod (binders, args)
-  val pair_rhs = HOLogic.mk_prod (binders', args')
-in
-  HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
-    Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) 
-      $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
-end
+  let
+    val (alpha_name, binder_ty) = 
+      case bmode of
+        Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
+      | Set => (@{const_name "alpha_set"}, @{typ "atom set"})
+      | Res => (@{const_name "alpha_res"}, @{typ "atom set"})
+    val ty = fastype_of args
+    val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
+    val alpha_ty = [ty, ty] ---> @{typ "bool"}
+    val fv_ty = ty --> @{typ "atom set"}
+    val pair_lhs = HOLogic.mk_prod (binders, args)
+    val pair_rhs = HOLogic.mk_prod (binders', args')
+  in
+    HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
+      Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) 
+        $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
+  end
 
 (* for non-recursive binders we have to produce alpha_bn premises *)
 fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = 
@@ -113,59 +113,59 @@
 (* generate the premises for an alpha rule; mk_frees is used
    if no binders are present *)
 fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
-let
-  fun mk_frees i =
-    let
-      val arg = nth args i
-      val arg' = nth args' i
-      val ty = fastype_of arg
-    in
-      if nth is_rec i
-      then fst (lookup alpha_map ty) $ arg $ arg'
-      else HOLogic.mk_eq (arg, arg')
-    end
+  let
+    fun mk_frees i =
+      let
+        val arg = nth args i
+        val arg' = nth args' i
+        val ty = fastype_of arg
+      in
+        if nth is_rec i
+        then fst (lookup alpha_map ty) $ arg $ arg'
+        else HOLogic.mk_eq (arg, arg')
+      end
 
-  fun mk_alpha_fv i = 
-    let
-      val ty = fastype_of (nth args i)
-    in
-      case AList.lookup (op=) alpha_map ty of
-        NONE => (HOLogic.eq_const ty, supp_const ty) 
-      | SOME (alpha, fv) => (alpha, fv) 
-    end  
-in
-  case bclause of
-    BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies 
-  | BC (bmode, binders, bodies) => 
-    let
-      val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
-      val comp_fv = foldl1 mk_prod_fv fvs
-      val comp_alpha = foldl1 mk_prod_alpha alphas
-      val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
-      val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
-      val comp_binders = mk_binders lthy bmode args binders
-      val comp_binders' = mk_binders lthy bmode args' binders
-      val alpha_prem = 
-        mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
-      val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
-    in
-      map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
-    end
-end
+    fun mk_alpha_fv i = 
+      let
+        val ty = fastype_of (nth args i)
+      in
+        case AList.lookup (op=) alpha_map ty of
+          NONE => (HOLogic.eq_const ty, supp_const ty) 
+        | SOME (alpha, fv) => (alpha, fv) 
+      end  
+  in
+    case bclause of
+      BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies 
+    | BC (bmode, binders, bodies) => 
+        let
+          val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
+          val comp_fv = foldl1 mk_prod_fv fvs
+          val comp_alpha = foldl1 mk_prod_alpha alphas
+          val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
+          val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
+          val comp_binders = mk_binders lthy bmode args binders
+          val comp_binders' = mk_binders lthy bmode args' binders
+          val alpha_prem = 
+            mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
+          val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
+        in
+          map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
+        end
+  end
 
 (* produces the introduction rule for an alpha rule *)
 fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = 
-let
-  val arg_names = Datatype_Prop.make_tnames arg_tys
-  val arg_names' = Name.variant_list arg_names arg_names
-  val args = map Free (arg_names ~~ arg_tys)
-  val args' = map Free (arg_names' ~~ arg_tys)
-  val alpha = fst (lookup alpha_map ty)
-  val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
-  val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
-in
-  Library.foldr Logic.mk_implies (flat prems, concl)
-end
+  let
+    val arg_names = Datatype_Prop.make_tnames arg_tys
+    val arg_names' = Name.variant_list arg_names arg_names
+    val args = map Free (arg_names ~~ arg_tys)
+    val args' = map Free (arg_names' ~~ arg_tys)
+    val alpha = fst (lookup alpha_map ty)
+    val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
+    val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
+  in
+    Library.foldr Logic.mk_implies (flat prems, concl)
+  end
 
 (* produces the premise of an alpha-bn rule; we only need to
    treat the case special where the binding clause is empty;
@@ -176,92 +176,91 @@
    - if the body is included in the bn_info, then we create
      either a recursive call to alpha-bn, or no premise  *)
 fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
-let
-  fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i = 
   let
-    val arg = nth args i
-    val arg' = nth args' i
-    val ty = fastype_of arg
+    fun mk_alpha_bn_prem i = 
+      let
+        val arg = nth args i
+        val arg' = nth args' i
+        val ty = fastype_of arg
+      in
+        case AList.lookup (op=) bn_args i of
+          NONE => (case (AList.lookup (op=) alpha_map ty) of
+                     NONE =>  [HOLogic.mk_eq (arg, arg')]
+                   | SOME (alpha, _) => [alpha $ arg $ arg'])
+        | SOME (NONE) => []
+        | SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
+      end  
   in
-    case AList.lookup (op=) bn_args i of
-      NONE => (case (AList.lookup (op=) alpha_map ty) of
-                 NONE =>  [HOLogic.mk_eq (arg, arg')]
-               | SOME (alpha, _) => [alpha $ arg $ arg'])
-    | SOME (NONE) => []
-    | SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
-  end  
-in
-  case bclause of
-    BC (_, [], bodies) => 
-      map HOLogic.mk_Trueprop 
-        (flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies))
-  | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
-end
+    case bclause of
+      BC (_, [], bodies) => 
+        map HOLogic.mk_Trueprop (flat (map mk_alpha_bn_prem bodies))
+    | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
+  end
 
 fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
-let
-  val arg_names = Datatype_Prop.make_tnames arg_tys
-  val arg_names' = Name.variant_list arg_names arg_names
-  val args = map Free (arg_names ~~ arg_tys)
-  val args' = map Free (arg_names' ~~ arg_tys)
-  val alpha_bn = lookup alpha_bn_map bn_trm
-  val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
-  val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
-in
-  Library.foldr Logic.mk_implies (flat prems, concl)
-end
+  let
+    val arg_names = Datatype_Prop.make_tnames arg_tys
+    val arg_names' = Name.variant_list arg_names arg_names
+    val args = map Free (arg_names ~~ arg_tys)
+    val args' = map Free (arg_names' ~~ arg_tys)
+    val alpha_bn = lookup alpha_bn_map bn_trm
+    val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
+    val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
+  in
+    Library.foldr Logic.mk_implies (flat prems, concl)
+  end
 
 fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = 
-let
-  val nth_constrs_info = nth constrs_info bn_n
-  val nth_bclausess = nth bclausesss bn_n
-in
-  map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
-end
+  let
+    val nth_constrs_info = nth constrs_info bn_n
+    val nth_bclausess = nth bclausesss bn_n
+  in
+    map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
+  end
 
 fun define_raw_alpha raw_full_ty_names raw_tys cns_info bn_info bclausesss fvs lthy =
-let
-  val alpha_names = map (prefix "alpha_" o Long_Name.base_name) raw_full_ty_names
-  val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) raw_tys
-  val alpha_frees = map Free (alpha_names ~~ alpha_tys)
-  val alpha_map = raw_tys ~~ (alpha_frees ~~ fvs)
+  let
+    val alpha_names = map (prefix "alpha_" o Long_Name.base_name) raw_full_ty_names
+    val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) raw_tys
+    val alpha_frees = map Free (alpha_names ~~ alpha_tys)
+    val alpha_map = raw_tys ~~ (alpha_frees ~~ fvs)
 
-  val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
-  val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
-  val alpha_bn_names = map (prefix "alpha_") bn_names
-  val alpha_bn_arg_tys = map (nth raw_tys) bn_tys
-  val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
-  val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
-  val alpha_bn_map = bns ~~ alpha_bn_frees
+    val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
+    val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
+    val alpha_bn_names = map (prefix "alpha_") bn_names
+    val alpha_bn_arg_tys = map (nth raw_tys) bn_tys
+    val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
+    val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
+    val alpha_bn_map = bns ~~ alpha_bn_frees
 
-  val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) cns_info bclausesss 
-  val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map cns_info bclausesss) bn_info
+    val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) cns_info bclausesss 
+    val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map cns_info bclausesss) bn_info
 
-  val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
-    (alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
-  val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
+    val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
+      (alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
+    val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
 
-  val (alphas, lthy') = Inductive.add_inductive_i
-     {quiet_mode = true, verbose = false, alt_name = Binding.empty,
-      coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
-     all_alpha_names [] all_alpha_intros [] lthy
+    val (alphas, lthy') = Inductive.add_inductive_i
+       {quiet_mode = true, verbose = false, alt_name = Binding.empty,
+        coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
+         all_alpha_names [] all_alpha_intros [] lthy
 
-  val all_alpha_trms_loc = #preds alphas;
-  val alpha_induct_loc = #raw_induct alphas;
-  val alpha_intros_loc = #intrs alphas;
-  val alpha_cases_loc = #elims alphas;
-  val phi = ProofContext.export_morphism lthy' lthy;
+    val all_alpha_trms_loc = #preds alphas;
+    val alpha_induct_loc = #raw_induct alphas;
+    val alpha_intros_loc = #intrs alphas;
+    val alpha_cases_loc = #elims alphas;
+    val phi = ProofContext.export_morphism lthy' lthy;
 
-  val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc
-  val (all_alpha_trms', _) = Variable.importT_terms all_alpha_trms lthy  
-  val alpha_induct = Morphism.thm phi alpha_induct_loc;
-  val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
-  val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
+    val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc
+    val (all_alpha_trms', _) = Variable.importT_terms all_alpha_trms lthy  
+    val alpha_induct = Morphism.thm phi alpha_induct_loc;
+    val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
+    val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
 
-  val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms'
-in
-  (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
-end
+    val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms'
+  in
+    (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
+  end
 
 
 
@@ -270,18 +269,18 @@
 (* transforms the distinctness theorems of the constructors 
    to "not-alphas" of the constructors *)
 fun mk_distinct_goal ty_trm_assoc neq =
-let
-  val (lhs, rhs) = 
-    neq
-    |> HOLogic.dest_Trueprop
-    |> HOLogic.dest_not
-    |> HOLogic.dest_eq
-  val ty = fastype_of lhs
-in
-  (lookup ty_trm_assoc ty) $ lhs $ rhs
-  |> HOLogic.mk_not
-  |> HOLogic.mk_Trueprop
-end
+  let
+    val (lhs, rhs) = 
+      neq
+      |> HOLogic.dest_Trueprop
+      |> HOLogic.dest_not
+      |> HOLogic.dest_eq
+    val ty = fastype_of lhs
+  in
+    (lookup ty_trm_assoc ty) $ lhs $ rhs
+    |> HOLogic.mk_not
+    |> HOLogic.mk_Trueprop
+  end
 
 fun distinct_tac cases_thms distinct_thms =
   rtac notI THEN' eresolve_tac cases_thms 
@@ -289,27 +288,27 @@
 
 
 fun mk_alpha_distincts ctxt cases_thms distinct_thms alpha_trms alpha_tys =
-let
-  (* proper import of type-variables does not work,
-     since then they are replaced by new variables, messing
-     up the ty_term assoc list *)
-  val distinct_thms' = map Thm.legacy_freezeT distinct_thms
-  val ty_trm_assoc = alpha_tys ~~ alpha_trms
+  let
+    (* proper import of type-variables does not work,
+       since then they are replaced by new variables, messing
+       up the ty_trm assoc list *)
+    val distinct_thms' = map Thm.legacy_freezeT distinct_thms
+    val ty_trm_assoc = alpha_tys ~~ alpha_trms
 
-  fun mk_alpha_distinct distinct_trm =
-  let
-    val ([trm'], ctxt') = Variable.import_terms true [distinct_trm] ctxt
-    val goal = mk_distinct_goal ty_trm_assoc distinct_trm
+    fun mk_alpha_distinct distinct_trm =
+      let
+        val ([trm'], ctxt') = Variable.import_terms true [distinct_trm] ctxt
+        val goal = mk_distinct_goal ty_trm_assoc distinct_trm
+    in
+      Goal.prove ctxt' [] [] goal 
+        (K (distinct_tac cases_thms distinct_thms 1))
+      |> singleton (Variable.export ctxt' ctxt)
+    end
+    
   in
-    Goal.prove ctxt' [] [] goal 
-      (K (distinct_tac cases_thms distinct_thms 1))
-    |> singleton (Variable.export ctxt' ctxt)
+    map (mk_alpha_distinct o prop_of) distinct_thms'
+    |> map Thm.varifyT_global
   end
-    
-in
-  map (mk_alpha_distinct o prop_of) distinct_thms'
-  |> map Thm.varifyT_global
-end
 
 
 
@@ -341,15 +340,15 @@
   end;
 
 fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
-let
-  val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
-  val goals = map mk_alpha_eq_iff_goal thms_imp;
-  val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
-  val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
-in
-  Variable.export ctxt' ctxt thms
-  |> map mk_simp_rule
-end
+  let
+    val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
+    val goals = map mk_alpha_eq_iff_goal thms_imp;
+    val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
+    val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
+  in
+    Variable.export ctxt' ctxt thms
+    |> map mk_simp_rule
+  end
 
 
 (** proof by induction over the alpha-definitions **)
@@ -358,48 +357,48 @@
   | is_true _ = false 
 
 fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
-let
-  val arg_tys = map (domain_type o fastype_of) alphas
+  let
+    val arg_tys = map (domain_type o fastype_of) alphas
 
-  val ((arg_names1, arg_names2), ctxt') =
-    ctxt
-    |> Variable.variant_fixes (replicate (length alphas) "x") 
-    ||>> Variable.variant_fixes (replicate (length alphas) "y")
+    val ((arg_names1, arg_names2), ctxt') =
+      ctxt
+      |> Variable.variant_fixes (replicate (length alphas) "x") 
+      ||>> Variable.variant_fixes (replicate (length alphas) "y")
 
-  val args1 = map2 (curry Free) arg_names1 arg_tys
-  val args2 = map2 (curry Free) arg_names2 arg_tys
+    val args1 = map2 (curry Free) arg_names1 arg_tys
+    val args2 = map2 (curry Free) arg_names2 arg_tys
 
-  val true_trms = replicate (length alphas) (K @{term True})
+    val true_trms = replicate (length alphas) (K @{term True})
   
-  fun apply_all x fs = map (fn f => f x) fs
-  val goals_rhs = 
-    group (props @ (alphas ~~ true_trms))
-    |> map snd 
-    |> map2 apply_all (args1 ~~ args2)
-    |> map fold_conj
+    fun apply_all x fs = map (fn f => f x) fs
+      val goals_rhs = 
+        group (props @ (alphas ~~ true_trms))
+        |> map snd 
+        |> map2 apply_all (args1 ~~ args2)
+        |> map fold_conj
 
-  fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
-  val goals_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
+    fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
+    val goals_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
 
-  val goals =
-    (map2 (curry HOLogic.mk_imp) goals_lhs goals_rhs)
-    |> foldr1 HOLogic.mk_conj
-    |> HOLogic.mk_Trueprop
+    val goals =
+      (map2 (curry HOLogic.mk_imp) goals_lhs goals_rhs)
+      |> foldr1 HOLogic.mk_conj
+      |> HOLogic.mk_Trueprop
 
-  fun tac ctxt =
-   HEADGOAL 
-     (DETERM o (rtac alpha_induct_thm) 
-      THEN_ALL_NEW FIRST' [rtac @{thm TrueI}, cases_tac ctxt])
-in
-  Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
-  |> singleton (ProofContext.export ctxt' ctxt)
-  |> Datatype_Aux.split_conj_thm
-  |> map (fn th => th RS mp) 
-  |> map Datatype_Aux.split_conj_thm
-  |> flat
-  |> map zero_var_indexes
-  |> filter_out (is_true o concl_of)
-end
+    fun tac ctxt =
+      HEADGOAL 
+        (DETERM o (rtac alpha_induct_thm) 
+         THEN_ALL_NEW FIRST' [rtac @{thm TrueI}, cases_tac ctxt])
+  in
+    Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
+    |> singleton (ProofContext.export ctxt' ctxt)
+    |> Datatype_Aux.split_conj_thm
+    |> map (fn th => th RS mp) 
+    |> map Datatype_Aux.split_conj_thm
+    |> flat
+    |> map zero_var_indexes
+    |> filter_out (is_true o concl_of)
+  end
 
 
 (** reflexivity proof for the alphas **)
@@ -407,48 +406,48 @@
 val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}
 
 fun cases_tac intros =
-let
-  val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}
+  let
+    val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}
 
-  val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac  
+    val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac  
 
-  val bound_tac = 
-    EVERY' [ rtac exi_zero, 
-             resolve_tac @{thms alpha_refl}, 
-             asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
-in
-  REPEAT o FIRST' [rtac @{thm conjI}, 
-    resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
-end
+    val bound_tac = 
+      EVERY' [ rtac exi_zero, 
+               resolve_tac @{thms alpha_refl}, 
+               asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
+  in
+    REPEAT o FIRST' [rtac @{thm conjI}, 
+      resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
+  end
 
 fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
-let
-  val arg_tys = 
-    alpha_trms
-    |> map fastype_of
-    |> map domain_type
-  val arg_bn_tys = 
-    alpha_bns
-    |> map fastype_of
-    |> map domain_type
-  val arg_names = Datatype_Prop.make_tnames arg_tys
-  val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
-  val args = map Free (arg_names ~~ arg_tys)
-  val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
-  val goal = 
-    group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
-    |> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts) 
-    |> map (foldr1 HOLogic.mk_conj)
-    |> foldr1 HOLogic.mk_conj
-    |> HOLogic.mk_Trueprop
-in
-  Goal.prove ctxt arg_names [] goal
-    (fn {context, ...} => 
-       HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros)) 
-  |> Datatype_Aux.split_conj_thm 
-  |> map Datatype_Aux.split_conj_thm 
-  |> flat
-end
+  let
+    val arg_tys = 
+      alpha_trms
+      |> map fastype_of
+      |> map domain_type
+    val arg_bn_tys = 
+      alpha_bns
+      |> map fastype_of
+      |> map domain_type
+    val arg_names = Datatype_Prop.make_tnames arg_tys
+    val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
+    val args = map Free (arg_names ~~ arg_tys)
+    val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
+    val goal = 
+      group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
+      |> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts) 
+      |> map (foldr1 HOLogic.mk_conj)
+      |> foldr1 HOLogic.mk_conj
+      |> HOLogic.mk_Trueprop
+  in
+    Goal.prove ctxt arg_names [] goal
+      (fn {context, ...} => 
+         HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros)) 
+    |> Datatype_Aux.split_conj_thm 
+    |> map Datatype_Aux.split_conj_thm 
+    |> flat
+  end
 
 
 
@@ -459,38 +458,38 @@
 
 (* for premises that contain binders *)
 fun prem_bound_tac pred_names ctxt = 
-let
-  fun trans_prem_tac pred_names ctxt = 
-    SUBPROOF (fn {prems, context, ...} => 
-    let
-      val prems' = map (transform_prem1 context pred_names) prems
-    in
-      resolve_tac prems' 1
-    end) ctxt
-  val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel.simps alphas}
-in
-  EVERY' 
-    [ etac exi_neg,
-      resolve_tac @{thms alpha_sym_eqvt},
-      asm_full_simp_tac (HOL_ss addsimps prod_simps),
-      Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
-      trans_prem_tac pred_names ctxt ] 
-end
+  let
+    fun trans_prem_tac pred_names ctxt = 
+      SUBPROOF (fn {prems, context, ...} => 
+        let
+          val prems' = map (transform_prem1 context pred_names) prems
+        in
+          resolve_tac prems' 1
+        end) ctxt
+    val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel.simps alphas}
+  in
+    EVERY' 
+      [ etac exi_neg,
+        resolve_tac @{thms alpha_sym_eqvt},
+        asm_full_simp_tac (HOL_ss addsimps prod_simps),
+        Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
+        trans_prem_tac pred_names ctxt ] 
+  end
 
 fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
-let
-  val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
+  let
+    val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
   
-  fun tac ctxt = 
-    let
-      val alpha_names =  map (fst o dest_Const) alpha_trms   
-    in
-      resolve_tac alpha_intros THEN_ALL_NEW 
-      FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
+    fun tac ctxt = 
+      let
+        val alpha_names =  map (fst o dest_Const) alpha_trms   
+      in
+        resolve_tac alpha_intros THEN_ALL_NEW 
+        FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
+    end
+  in
+    alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt 
   end
-in
-  alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt 
-end
 
 
 (** transitivity proof for alphas **)
@@ -516,50 +515,50 @@
     end)
 
 fun non_trivial_cases_tac pred_names intros ctxt = 
-let
-  val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel.simps}
-in
-  resolve_tac intros
-  THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN' 
-    TRY o EVERY'   (* if binders are present *)
-      [ etac @{thm exE},
-        etac @{thm exE},
-        perm_inst_tac ctxt, 
-        resolve_tac @{thms alpha_trans_eqvt}, 
-        atac,
-        aatac pred_names ctxt, 
-        Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
-        asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
-end
+  let
+    val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel.simps}
+  in
+    resolve_tac intros
+    THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN' 
+      TRY o EVERY'   (* if binders are present *)
+        [ etac @{thm exE},
+          etac @{thm exE},
+          perm_inst_tac ctxt, 
+          resolve_tac @{thms alpha_trans_eqvt}, 
+          atac,
+          aatac pred_names ctxt, 
+          Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
+          asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
+  end
 			  
 fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
-let
-  fun all_cases ctxt = 
-    asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
-    THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
-in
-  EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
-           ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
-end
+  let
+    fun all_cases ctxt = 
+      asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
+      THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
+  in
+    EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
+             ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
+  end
 
 fun prep_trans_goal alpha_trm (arg1, arg2) =
-let
-  val arg_ty = fastype_of arg1
-  val mid = alpha_trm $ arg2 $ (Bound 0)
-  val rhs = alpha_trm $ arg1 $ (Bound 0) 
-in
-  HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
-end
+  let
+    val arg_ty = fastype_of arg1
+    val mid = alpha_trm $ arg2 $ (Bound 0)
+    val rhs = alpha_trm $ arg1 $ (Bound 0) 
+  in
+    HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
+  end
 
 fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
-let
-  val alpha_names =  map (fst o dest_Const) alpha_trms 
-  val props = map prep_trans_goal alpha_trms
-  val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}  
-in
-  alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
-    (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
-end
+  let
+    val alpha_names =  map (fst o dest_Const) alpha_trms 
+    val props = map prep_trans_goal alpha_trms
+    val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}  
+  in
+    alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
+      (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
+  end
 
 
 (** proves the equivp predicate for all alphas **)
@@ -569,19 +568,19 @@
     by (rule eq_reflection, auto simp add: transp_def)}
 
 fun raw_prove_equivp alphas alpha_bns refl symm trans ctxt = 
-let
-  val refl' = map (fold_rule @{thms reflp_def} o atomize) refl
-  val symm' = map (fold_rule @{thms symp_def} o atomize) symm
-  val trans' = map (fold_rule [transp_def'] o atomize) trans
+  let
+    val refl' = map (fold_rule @{thms reflp_def} o atomize) refl
+    val symm' = map (fold_rule @{thms symp_def} o atomize) symm
+    val trans' = map (fold_rule [transp_def'] o atomize) trans
 
-  fun prep_goal t = 
-    HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t) 
-in    
-  Goal.prove_multi ctxt [] [] (map prep_goal (alphas @ alpha_bns))
-  (K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac @{thm equivpI} THEN' 
-     RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
-  |> chop (length alphas)
-end
+    fun prep_goal t = 
+      HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t) 
+  in    
+    Goal.prove_multi ctxt [] [] (map prep_goal (alphas @ alpha_bns))
+    (K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac @{thm equivpI} THEN' 
+       RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
+    |> chop (length alphas)
+  end
 
 
 (* proves that alpha_raw implies alpha_bn *)
@@ -602,100 +601,99 @@
     end) ctxt
 
 fun raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct ctxt =
-let
-  val arg_ty = domain_type o fastype_of 
-  val alpha_names =  map (fst o dest_Const) alpha_trms
-  val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
-  val props = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => t $ x $ y)) alpha_bn_trms
-in
-  alpha_prove (alpha_trms @ alpha_bn_trms) props alpha_induct 
-    (raw_prove_bn_imp_tac alpha_names alpha_intros) ctxt
-end
+  let
+    val arg_ty = domain_type o fastype_of 
+    val alpha_names =  map (fst o dest_Const) alpha_trms
+    val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
+    val props = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => t $ x $ y)) alpha_bn_trms
+  in
+    alpha_prove (alpha_trms @ alpha_bn_trms) props alpha_induct 
+      (raw_prove_bn_imp_tac alpha_names alpha_intros) ctxt
+  end
 
 
 (* respectfulness for fv_raw / bn_raw *)
 
 fun raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms fvs bns fv_bns alpha_induct simps ctxt =
-let
-  val arg_ty = domain_type o fastype_of 
-  val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
-  fun mk_eq' t x y = HOLogic.mk_eq (t $ x, t $ y)
+  let
+    val arg_ty = domain_type o fastype_of 
+    val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
+    fun mk_eq' t x y = HOLogic.mk_eq (t $ x, t $ y)
 
-  val prop1 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) fvs
-  val prop2 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) (bns @ fv_bns)
-  val prop3 = map2 (fn t1 => fn t2 => (t1, fn (x, y) => mk_eq' t2 x y)) alpha_bn_trms fv_bns
+    val prop1 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) fvs
+    val prop2 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) (bns @ fv_bns)
+    val prop3 = map2 (fn t1 => fn t2 => (t1, fn (x, y) => mk_eq' t2 x y)) alpha_bn_trms fv_bns
   
-  val ss = HOL_ss addsimps (simps @ @{thms alphas prod_fv.simps set.simps append.simps} 
-    @ @{thms Un_assoc Un_insert_left Un_empty_right Un_empty_left}) 
+    val ss = HOL_ss addsimps (simps @ @{thms alphas prod_fv.simps set.simps append.simps} 
+      @ @{thms Un_assoc Un_insert_left Un_empty_right Un_empty_left}) 
 
-in
-  alpha_prove (alpha_trms @ alpha_bn_trms) (prop1 @ prop2 @ prop3) alpha_induct 
-    (K (asm_full_simp_tac ss)) ctxt
-end
+  in
+    alpha_prove (alpha_trms @ alpha_bn_trms) (prop1 @ prop2 @ prop3) alpha_induct 
+      (K (asm_full_simp_tac ss)) ctxt
+  end
 
 
 (* respectfulness for size *)
 
 fun raw_size_rsp_aux all_alpha_trms alpha_induct simps ctxt =
-let
-  val arg_tys = map (domain_type o fastype_of) all_alpha_trms
+  let
+    val arg_tys = map (domain_type o fastype_of) all_alpha_trms
 
-  fun mk_prop ty (x, y) = HOLogic.mk_eq 
-    (HOLogic.size_const ty $ x, HOLogic.size_const ty $ y)
+    fun mk_prop ty (x, y) = HOLogic.mk_eq 
+      (HOLogic.size_const ty $ x, HOLogic.size_const ty $ y)
 
-  val props = map2 (fn trm => fn ty => (trm, mk_prop ty)) all_alpha_trms arg_tys 
+    val props = map2 (fn trm => fn ty => (trm, mk_prop ty)) all_alpha_trms arg_tys 
   
-  val ss = HOL_ss addsimps (simps @ @{thms alphas prod_alpha_def prod_rel.simps 
-    permute_prod_def prod.cases prod.recs})
+    val ss = HOL_ss addsimps (simps @ @{thms alphas prod_alpha_def prod_rel.simps 
+      permute_prod_def prod.cases prod.recs})
 
-  val tac = (TRY o REPEAT o etac @{thm exE}) THEN' asm_full_simp_tac ss
-in
-  alpha_prove all_alpha_trms props alpha_induct (K tac) ctxt
-end
+    val tac = (TRY o REPEAT o etac @{thm exE}) THEN' asm_full_simp_tac ss
+  in
+    alpha_prove all_alpha_trms props alpha_induct (K tac) ctxt
+  end
 
 
 (* respectfulness for constructors *)
 
 fun raw_constr_rsp_tac alpha_intros simps = 
-let
-  val pre_ss = HOL_ss addsimps @{thms fun_rel_def}
-  val post_ss = HOL_ss addsimps @{thms alphas prod_alpha_def prod_rel.simps 
-    prod_fv.simps fresh_star_zero permute_zero prod.cases} @ simps
-  (* funs_rsp alpha_bn_simps *)
-in
-  asm_full_simp_tac pre_ss
-  THEN' REPEAT o (resolve_tac @{thms allI impI})
-  THEN' resolve_tac alpha_intros
-  THEN_ALL_NEW (TRY o (rtac exi_zero) THEN' asm_full_simp_tac post_ss)
-end
+  let
+    val pre_ss = HOL_ss addsimps @{thms fun_rel_def}
+    val post_ss = HOL_ss addsimps @{thms alphas prod_alpha_def prod_rel.simps 
+      prod_fv.simps fresh_star_zero permute_zero prod.cases} @ simps
+  in
+    asm_full_simp_tac pre_ss
+    THEN' REPEAT o (resolve_tac @{thms allI impI})
+    THEN' resolve_tac alpha_intros
+    THEN_ALL_NEW (TRY o (rtac exi_zero) THEN' asm_full_simp_tac post_ss)
+  end
 
 
 fun raw_constrs_rsp constrs alpha_trms alpha_intros simps ctxt =
-let
-  val alpha_arg_tys = map (domain_type o fastype_of) alpha_trms
+  let
+    val alpha_arg_tys = map (domain_type o fastype_of) alpha_trms
   
-  fun lookup ty = 
-    case AList.lookup (op=) (alpha_arg_tys ~~ alpha_trms) ty of
-      NONE => HOLogic.eq_const ty
-    | SOME alpha => alpha 
+    fun lookup ty = 
+      case AList.lookup (op=) (alpha_arg_tys ~~ alpha_trms) ty of
+        NONE => HOLogic.eq_const ty
+      | SOME alpha => alpha 
   
-  fun fun_rel_app t1 t2 = 
-    Const (@{const_name "fun_rel"}, dummyT) $ t1 $ t2
+    fun fun_rel_app t1 t2 = 
+      Const (@{const_name "fun_rel"}, dummyT) $ t1 $ t2
 
-  fun prep_goal trm =
-    trm
-    |> strip_type o fastype_of
-    |>> map lookup
-    ||> lookup
-    |> uncurry (fold_rev fun_rel_app)
-    |> (fn t => t $ trm $ trm)
-    |> Syntax.check_term ctxt
-    |> HOLogic.mk_Trueprop
-in
-  Goal.prove_multi ctxt [] [] (map prep_goal constrs)
-    (K (HEADGOAL 
-      (Goal.conjunction_tac THEN_ALL_NEW raw_constr_rsp_tac alpha_intros simps)))
-end
+    fun prep_goal trm =
+      trm
+      |> strip_type o fastype_of
+      |>> map lookup
+      ||> lookup
+      |> uncurry (fold_rev fun_rel_app)
+      |> (fn t => t $ trm $ trm)
+      |> Syntax.check_term ctxt
+      |> HOLogic.mk_Trueprop
+  in
+    Goal.prove_multi ctxt [] [] (map prep_goal constrs)
+      (K (HEADGOAL 
+        (Goal.conjunction_tac THEN_ALL_NEW raw_constr_rsp_tac alpha_intros simps)))
+  end
 
 
 (* rsp lemmas for alpha_bn relations *)
@@ -708,22 +706,22 @@
 (* we have to reorder the alpha_bn_imps theorems in order
    to be in order with alpha_bn_trms *)
 fun raw_alpha_bn_rsp alpha_bn_trms alpha_bn_equivp alpha_bn_imps =
-let
-  fun mk_map thm =
-    thm |> `prop_of
-        |>> List.last  o snd o strip_comb
-        |>> HOLogic.dest_Trueprop
-        |>> head_of
-        |>> fst o dest_Const
+  let
+    fun mk_map thm =
+      thm |> `prop_of
+          |>> List.last  o snd o strip_comb
+          |>> HOLogic.dest_Trueprop
+          |>> head_of
+          |>> fst o dest_Const
 
-  val alpha_bn_imps' = 
-    map (lookup (map mk_map alpha_bn_imps) o fst o dest_Const) alpha_bn_trms
+    val alpha_bn_imps' = 
+      map (lookup (map mk_map alpha_bn_imps) o fst o dest_Const) alpha_bn_trms
 
-  fun mk_thm thm1 thm2 = 
-    (forall_intr_vars thm2) COMP (thm1 RS rsp_equivp)
-in
-  map2 mk_thm alpha_bn_equivp alpha_bn_imps'
-end
+    fun mk_thm thm1 thm2 = 
+      (forall_intr_vars thm2) COMP (thm1 RS rsp_equivp)
+  in
+    map2 mk_thm alpha_bn_equivp alpha_bn_imps'
+  end
 
 
 (* transformation of the natural rsp-lemmas into standard form *)
@@ -732,10 +730,10 @@
   "(!x y. R x y --> f x = f y) ==> (R ===> (op =)) f f" by simp}
 
 fun mk_funs_rsp thm = 
- thm
- |> atomize
- |> single
- |> curry (op OF) fun_rsp
+  thm
+  |> atomize
+  |> single
+  |> curry (op OF) fun_rsp
 
 
 val permute_rsp = @{lemma 
@@ -743,10 +741,10 @@
      ==> ((op =) ===> R ===> R) permute permute"  by simp}
 
 fun mk_alpha_permute_rsp thm = 
- thm
- |> atomize
- |> single
- |> curry (op OF) permute_rsp
+  thm
+  |> atomize
+  |> single
+  |> curry (op OF) permute_rsp