Nominal/Equivp.thy
changeset 1830 8db45a106569
child 1898 f8c8e2afcc18
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Equivp.thy	Wed Apr 14 10:39:03 2010 +0200
@@ -0,0 +1,367 @@
+theory Equivp
+imports "Fv"
+begin
+
+ML {*
+fun build_alpha_sym_trans_gl alphas (x, y, z) =
+let
+  fun build_alpha alpha =
+    let
+      val ty = domain_type (fastype_of alpha);
+      val var = Free(x, ty);
+      val var2 = Free(y, ty);
+      val var3 = Free(z, ty);
+      val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var);
+      val transp = HOLogic.mk_imp (alpha $ var $ var2,
+        HOLogic.mk_all (z, ty,
+          HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3)))
+    in
+      (symp, transp)
+    end;
+  val eqs = map build_alpha alphas
+  val (sym_eqs, trans_eqs) = split_list eqs
+  fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l
+in
+  (conj sym_eqs, conj trans_eqs)
+end
+*}
+
+ML {*
+fun build_alpha_refl_gl fv_alphas_lst alphas =
+let
+  val (fvs_alphas, _) = split_list fv_alphas_lst;
+  val (_, alpha_ts) = split_list fvs_alphas;
+  val tys = map (domain_type o fastype_of) alpha_ts;
+  val names = Datatype_Prop.make_tnames tys;
+  val args = map Free (names ~~ tys);
+  fun find_alphas ty x =
+    domain_type (fastype_of x) = ty;
+  fun refl_eq_arg (ty, arg) =
+    let
+      val rel_alphas = filter (find_alphas ty) alphas;
+    in
+      map (fn x => x $ arg $ arg) rel_alphas
+    end;
+  (* Flattening loses the induction structure *)
+  val eqs = map (foldr1 HOLogic.mk_conj) (map refl_eq_arg (tys ~~ args))
+in
+  (names, HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj eqs))
+end
+*}
+
+ML {*
+fun reflp_tac induct eq_iff =
+  rtac induct THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps eq_iff) THEN_ALL_NEW
+  split_conj_tac THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]}
+  THEN_ALL_NEW split_conj_tac THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps
+     @{thms alphas fresh_star_def fresh_zero_perm permute_zero ball_triv
+       add_0_left supp_zero_perm Int_empty_left split_conv})
+*}
+
+ML {*
+fun build_alpha_refl fv_alphas_lst alphas induct eq_iff ctxt =
+let
+  val (names, gl) = build_alpha_refl_gl fv_alphas_lst alphas;
+  val refl_conj = Goal.prove ctxt names [] gl (fn _ => reflp_tac induct eq_iff 1);
+in
+  HOLogic.conj_elims refl_conj
+end
+*}
+
+lemma exi_neg: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (- p)) \<Longrightarrow> \<exists>pi. Q pi"
+apply (erule exE)
+apply (rule_tac x="-pi" in exI)
+by auto
+
+ML {*
+fun symp_tac induct inj eqvt ctxt =
+  rel_indtac induct THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps inj) THEN_ALL_NEW split_conj_tac
+  THEN_ALL_NEW
+  REPEAT o etac @{thm exi_neg}
+  THEN_ALL_NEW
+  split_conj_tac THEN_ALL_NEW
+  asm_full_simp_tac (HOL_ss addsimps @{thms supp_minus_perm minus_add[symmetric]}) THEN_ALL_NEW
+  TRY o (resolve_tac @{thms alphas_compose_sym2} ORELSE' resolve_tac @{thms alphas_compose_sym}) THEN_ALL_NEW
+  (asm_full_simp_tac (HOL_ss addsimps (eqvt @ all_eqvts ctxt)))
+*}
+
+
+lemma exi_sum: "\<exists>(pi :: perm). P pi \<Longrightarrow> \<exists>(pi :: perm). Q pi \<Longrightarrow> (\<And>(p :: perm) (pi :: perm). P p \<Longrightarrow> Q pi \<Longrightarrow> R (pi + p)) \<Longrightarrow> \<exists>pi. R pi"
+apply (erule exE)+
+apply (rule_tac x="pia + pi" in exI)
+by auto
+
+
+ML {*
+fun eetac rule = 
+  Subgoal.FOCUS_PARAMS (fn focus =>
+    let
+      val concl = #concl focus
+      val prems = Logic.strip_imp_prems (term_of concl)
+      val exs = filter (fn x => is_ex (HOLogic.dest_Trueprop x)) prems
+      val cexs = map (SOME o (cterm_of (ProofContext.theory_of (#context focus)))) exs
+      val thins = map (fn cex => Drule.instantiate' [] [cex] Drule.thin_rl) cexs
+    in
+      (etac rule THEN' RANGE[atac, eresolve_tac thins]) 1
+    end
+  )
+*}
+
+ML {*
+fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
+  rel_indtac induct THEN_ALL_NEW
+  (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps alpha_inj) THEN_ALL_NEW
+  split_conj_tac THEN_ALL_NEW REPEAT o (eetac @{thm exi_sum} ctxt) THEN_ALL_NEW split_conj_tac
+  THEN_ALL_NEW (asm_full_simp_tac (HOL_ss addsimps (term_inj @ distinct)))
+  THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
+  TRY o (eresolve_tac @{thms alphas_compose_trans2} ORELSE' eresolve_tac @{thms alphas_compose_trans}) THEN_ALL_NEW
+  (asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ eqvt @ term_inj @ distinct)))
+*}
+
+lemma transpI:
+  "(\<And>xa ya. R xa ya \<longrightarrow> (\<forall>z. R ya z \<longrightarrow> R xa z)) \<Longrightarrow> transp R"
+  unfolding transp_def
+  by blast
+
+ML {*
+fun equivp_tac reflps symps transps =
+  (*let val _ = tracing (PolyML.makestring (reflps, symps, transps)) in *)
+  simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
+  THEN' rtac conjI THEN' rtac allI THEN'
+  resolve_tac reflps THEN'
+  rtac conjI THEN' rtac allI THEN' rtac allI THEN'
+  resolve_tac symps THEN'
+  rtac @{thm transpI} THEN' resolve_tac transps
+*}
+
+ML {*
+fun build_equivps alphas reflps alpha_induct term_inj alpha_inj distinct cases eqvt ctxt =
+let
+  val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt;
+  val (symg, transg) = build_alpha_sym_trans_gl alphas (x, y, z)
+  fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt ctxt 1;
+  fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
+  val symp_loc = Goal.prove ctxt' [] [] symg symp_tac';
+  val transp_loc = Goal.prove ctxt' [] [] transg transp_tac';
+  val [symp, transp] = Variable.export ctxt' ctxt [symp_loc, transp_loc]
+  val symps = HOLogic.conj_elims symp
+  val transps = HOLogic.conj_elims transp
+  fun equivp alpha =
+    let
+      val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool})
+      val goal = @{term Trueprop} $ (equivp $ alpha)
+      fun tac _ = equivp_tac reflps symps transps 1
+    in
+      Goal.prove ctxt [] [] goal tac
+    end
+in
+  map equivp alphas
+end
+*}
+
+lemma not_in_union: "c \<notin> a \<union> b \<equiv> (c \<notin> a \<and> c \<notin> b)"
+by auto
+
+ML {*
+fun supports_tac perm =
+  simp_tac (HOL_ss addsimps @{thms supports_def not_in_union} @ perm) THEN_ALL_NEW (
+    REPEAT o rtac allI THEN' REPEAT o rtac impI THEN' split_conj_tac THEN'
+    asm_full_simp_tac (HOL_ss addsimps @{thms fresh_def[symmetric]
+      swap_fresh_fresh fresh_atom swap_at_base_simps(3) swap_atom_image_fresh
+      supp_fset_to_set supp_fmap_atom}))
+*}
+
+ML {*
+fun mk_supp ty x =
+  Const (@{const_name supp}, ty --> @{typ "atom set"}) $ x
+*}
+
+ML {*
+fun mk_supports_eq thy cnstr =
+let
+  val (tys, ty) = (strip_type o fastype_of) cnstr
+  val names = Datatype_Prop.make_tnames tys
+  val frees = map Free (names ~~ tys)
+  val rhs = list_comb (cnstr, frees)
+
+  fun mk_supp_arg (x, ty) =
+    if is_atom thy ty then mk_supp @{typ atom} (mk_atom ty $ x) else
+    if is_atom_set thy ty then mk_supp @{typ "atom set"} (mk_atom_set x) else
+    if is_atom_fset thy ty then mk_supp @{typ "atom set"} (mk_atom_fset x)
+    else mk_supp ty x
+  val lhss = map mk_supp_arg (frees ~~ tys)
+  val supports = Const(@{const_name "supports"}, @{typ "atom set"} --> ty --> @{typ bool})
+  val eq = HOLogic.mk_Trueprop (supports $ mk_union lhss $ rhs)
+in
+  (names, eq)
+end
+*}
+
+ML {*
+fun prove_supports ctxt perms cnst =
+let
+  val (names, eq) = mk_supports_eq (ProofContext.theory_of ctxt) cnst
+in
+  Goal.prove ctxt names [] eq (fn _ => supports_tac perms 1)
+end
+*}
+
+ML {*
+fun mk_fs tys =
+let
+  val names = Datatype_Prop.make_tnames tys
+  val frees = map Free (names ~~ tys)
+  val supps = map2 mk_supp tys frees
+  val fin_supps = map (fn x => @{term "finite :: atom set \<Rightarrow> bool"} $ x) supps
+in
+  (names, HOLogic.mk_Trueprop (mk_conjl fin_supps))
+end
+*}
+
+ML {*
+fun fs_tac induct supports = rel_indtac induct THEN_ALL_NEW (
+  rtac @{thm supports_finite} THEN' resolve_tac supports) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_ss addsimps @{thms supp_atom supp_atom_image supp_fset_to_set
+    supp_fmap_atom finite_insert finite.emptyI finite_Un finite_supp})
+*}
+
+ML {*
+fun prove_fs ctxt induct supports tys =
+let
+  val (names, eq) = mk_fs tys
+in
+  Goal.prove ctxt names [] eq (fn _ => fs_tac induct supports 1)
+end
+*}
+
+ML {*
+fun mk_supp x = Const (@{const_name supp}, fastype_of x --> @{typ "atom set"}) $ x;
+
+fun mk_supp_neq arg (fv, alpha) =
+let
+  val collect = Const ("Collect", @{typ "(atom \<Rightarrow> bool) \<Rightarrow> atom \<Rightarrow> bool"});
+  val ty = fastype_of arg;
+  val perm = Const ("Nominal2_Base.pt_class.permute", @{typ perm} --> ty --> ty);
+  val finite = @{term "finite :: atom set \<Rightarrow> bool"}
+  val rhs = collect $ Abs ("a", @{typ atom},
+    HOLogic.mk_not (finite $
+      (collect $ Abs ("b", @{typ atom},
+        HOLogic.mk_not (alpha $ (perm $ (@{term swap} $ Bound 1 $ Bound 0) $ arg) $ arg)))))
+in
+  HOLogic.mk_eq (fv $ arg, rhs)
+end;
+
+fun supp_eq fv_alphas_lst =
+let
+  val (fvs_alphas, ls) = split_list fv_alphas_lst;
+  val (fv_ts, _) = split_list fvs_alphas;
+  val tys = map (domain_type o fastype_of) fv_ts;
+  val names = Datatype_Prop.make_tnames tys;
+  val args = map Free (names ~~ tys);
+  fun supp_eq_arg ((fv, arg), l) =
+    mk_conjl
+      ((HOLogic.mk_eq (fv $ arg, mk_supp arg)) ::
+       (map (mk_supp_neq arg) l))
+  val eqs = mk_conjl (map supp_eq_arg ((fv_ts ~~ args) ~~ ls))
+in
+  (names, HOLogic.mk_Trueprop eqs)
+end
+*}
+
+ML {*
+fun combine_fv_alpha_bns (fv_ts_nobn, fv_ts_bn) (alpha_ts_nobn, alpha_ts_bn) bn_nos =
+if length fv_ts_bn < length alpha_ts_bn then
+  (fv_ts_nobn ~~ alpha_ts_nobn) ~~ (replicate (length fv_ts_nobn) [])
+else let
+  val fv_alpha_nos = 0 upto (length fv_ts_nobn - 1);
+  fun filter_fn i (x, j) = if j = i then SOME x else NONE;
+  val fv_alpha_bn_nos = (fv_ts_bn ~~ alpha_ts_bn) ~~ bn_nos;
+  val fv_alpha_bn_all = map (fn i => map_filter (filter_fn i) fv_alpha_bn_nos) fv_alpha_nos;
+in
+  (fv_ts_nobn ~~ alpha_ts_nobn) ~~ fv_alpha_bn_all
+end
+*}
+
+(* TODO: this is a hack, it assumes that only one type of Abs's is present
+   in the type and chooses this supp_abs. Additionally single atoms are
+   treated properly. *)
+ML {*
+fun choose_alpha_abs eqiff =
+let
+  fun exists_subterms f ts = true mem (map (exists_subterm f) ts);
+  val terms = map prop_of eqiff;
+  fun check cname = exists_subterms (fn x => fst(dest_Const x) = cname handle _ => false) terms
+  val no =
+    if check @{const_name alpha_lst} then 2 else
+    if check @{const_name alpha_res} then 1 else
+    if check @{const_name alpha_gen} then 0 else
+    error "Failure choosing supp_abs"
+in
+  nth @{thms supp_abs[symmetric]} no
+end
+*}
+lemma supp_abs_atom: "supp (Abs {atom a} (x :: 'a :: fs)) = supp x - {atom a}"
+by (rule supp_abs(1))
+
+lemma supp_abs_sum:
+  "supp (Abs x (a :: 'a :: fs)) \<union> supp (Abs x (b :: 'b :: fs)) = supp (Abs x (a, b))"
+  "supp (Abs_res x (a :: 'a :: fs)) \<union> supp (Abs_res x (b :: 'b :: fs)) = supp (Abs_res x (a, b))"
+  "supp (Abs_lst y (a :: 'a :: fs)) \<union> supp (Abs_lst y (b :: 'b :: fs)) = supp (Abs_lst y (a, b))"
+  apply (simp_all add: supp_abs supp_Pair)
+  apply blast+
+  done
+
+
+ML {*
+fun supp_eq_tac ind fv perm eqiff ctxt =
+  rel_indtac ind THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps fv) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps @{thms supp_abs_atom[symmetric]}) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps [choose_alpha_abs eqiff]) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms supp_abs_sum}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms supp_def}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps (@{thms permute_abs} @ perm)) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps (@{thms Abs_eq_iff} @ eqiff)) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms alphas3 alphas2}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms alphas}) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps (@{thm supp_Pair} :: sym_eqvts ctxt)) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps (@{thm Pair_eq} :: all_eqvts ctxt)) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms supp_at_base[symmetric,simplified supp_def]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms infinite_Un[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms de_Morgan_conj[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms ex_simps(1,2)[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_ss addsimps @{thms Collect_const finite.emptyI})
+*}
+
+
+
+ML {*
+fun build_eqvt_gl pi frees fnctn ctxt =
+let
+  val typ = domain_type (fastype_of fnctn);
+  val arg = the (AList.lookup (op=) frees typ);
+in
+  ([HOLogic.mk_eq ((perm_arg (fnctn $ arg) $ pi $ (fnctn $ arg)), (fnctn $ (perm_arg arg $ pi $ arg)))], ctxt)
+end
+*}
+
+ML {*
+fun prove_eqvt tys ind simps funs ctxt =
+let
+  val ([pi], ctxt') = Variable.variant_fixes ["p"] ctxt;
+  val pi = Free (pi, @{typ perm});
+  val tac = asm_full_simp_tac (HOL_ss addsimps (@{thms atom_eqvt permute_list.simps} @ simps @ all_eqvts ctxt'))
+  val ths_loc = prove_by_induct tys (build_eqvt_gl pi) ind tac funs ctxt'
+  val ths = Variable.export ctxt' ctxt ths_loc
+  val add_eqvt = Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)
+in
+  (ths, snd (Local_Theory.note ((Binding.empty, [add_eqvt]), ths) ctxt))
+end
+*}
+
+end