--- a/Nominal-General/Nominal2_Base.thy Wed Apr 28 07:27:28 2010 +0200
+++ b/Nominal-General/Nominal2_Base.thy Wed Apr 28 08:22:20 2010 +0200
@@ -1162,6 +1162,44 @@
thus ?thesis ..
qed
+lemma image_eqvt:
+ shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
+ unfolding permute_set_eq_image
+ unfolding permute_fun_def [where f=f]
+ by (simp add: image_image)
+
+lemma atom_image_cong:
+ shows "(atom ` X = atom ` Y) = (X = Y)"
+ apply(rule inj_image_eq_iff)
+ apply(simp add: inj_on_def)
+ done
+
+lemma atom_image_supp:
+ shows "supp S = supp (atom ` S)"
+ apply(simp add: supp_def)
+ apply(simp add: image_eqvt)
+ apply(subst (2) permute_fun_def)
+ apply(simp add: atom_eqvt)
+ apply(simp add: atom_image_cong)
+ done
+
+lemma supp_finite_at_set:
+ assumes a: "finite S"
+ shows "supp S = atom ` S"
+proof -
+ have fin: "finite (atom ` S)"
+ using a by (simp add: finite_imageI)
+ have "supp S = supp (atom ` S)" by (rule atom_image_supp)
+ also have "\<dots> = atom ` S" using fin by (simp add: supp_finite_atom_set)
+ finally show "supp S = atom ` S" by simp
+qed
+
+lemma supp_at_insert:
+ fixes a::"'a::at_base"
+ assumes a: "finite S"
+ shows "supp (insert a S) = supp a \<union> supp S"
+ using a by (simp add: supp_finite_at_set supp_at_base)
+
section {* library functions for the nominal infrastructure *}
use "nominal_library.ML"