--- a/Nominal-General/Nominal2_Atoms.thy Wed Apr 28 07:27:28 2010 +0200
+++ b/Nominal-General/Nominal2_Atoms.thy Wed Apr 28 08:22:20 2010 +0200
@@ -17,7 +17,6 @@
*}
lemma atom_image_cong:
- fixes X Y::"('a::at_base) set"
shows "(atom ` X = atom ` Y) = (X = Y)"
apply(rule inj_image_eq_iff)
apply(simp add: inj_on_def)
@@ -33,91 +32,22 @@
done
lemma supp_finite_at_set:
- fixes S::"('a::at) set"
- assumes a: "finite S"
- shows "supp S = atom ` S"
- apply(rule finite_supp_unique)
- apply(simp add: supports_def)
- apply(rule allI)+
- apply(rule impI)
- apply(rule swap_fresh_fresh)
- apply(simp add: fresh_def)
- apply(simp add: atom_image_supp)
- apply(subst supp_finite_atom_set)
- apply(rule finite_imageI)
- apply(simp add: a)
- apply(simp)
- apply(simp add: fresh_def)
- apply(simp add: atom_image_supp)
- apply(subst supp_finite_atom_set)
- apply(rule finite_imageI)
- apply(simp add: a)
- apply(simp)
- apply(rule finite_imageI)
- apply(simp add: a)
- apply(drule swap_set_in)
- apply(assumption)
- apply(simp)
- apply(simp add: image_eqvt)
- apply(simp add: permute_fun_def)
- apply(simp add: atom_eqvt)
- apply(simp add: atom_image_cong)
- done
-
-lemma supp_finite_at_set_aux:
- fixes S::"('a::at) set"
assumes a: "finite S"
shows "supp S = atom ` S"
-proof
- show "supp S \<subseteq> ((atom::'a::at \<Rightarrow> atom) ` S)"
- apply(rule supp_is_subset)
- apply(simp add: supports_def)
- apply(rule allI)+
- apply(rule impI)
- apply(rule swap_fresh_fresh)
- apply(simp add: fresh_def)
- apply(simp add: atom_image_supp)
- apply(subst supp_finite_atom_set)
- apply(rule finite_imageI)
- apply(simp add: a)
- apply(simp)
- apply(simp add: fresh_def)
- apply(simp add: atom_image_supp)
- apply(subst supp_finite_atom_set)
- apply(rule finite_imageI)
- apply(simp add: a)
- apply(simp)
- apply(rule finite_imageI)
- apply(simp add: a)
- done
-next
- have "supp ((atom::'a::at \<Rightarrow> atom) ` S) \<subseteq> supp ((op `) (atom::'a::at \<Rightarrow> atom)) \<union> supp S"
- by (simp add: supp_fun_app)
- moreover
- have "supp ((op `) (atom::'a::at \<Rightarrow> atom)) = {}"
- apply(rule supp_fun_eqvt)
- apply(perm_simp)
- apply(simp)
- done
- moreover
- have "supp ((atom::'a::at \<Rightarrow> atom) ` S) = ((atom::'a::at \<Rightarrow> atom) ` S)"
- apply(subst supp_finite_atom_set)
- apply(rule finite_imageI)
- apply(simp add: a)
- apply(simp)
- done
- ultimately
- show "((atom::'a::at \<Rightarrow> atom) ` S) \<subseteq> supp S" by simp
+proof -
+ have fin: "finite (atom ` S)"
+ using a by (simp add: finite_imageI)
+ have "supp S = supp (atom ` S)" by (rule atom_image_supp)
+ also have "\<dots> = atom ` S" using fin by (simp add: supp_finite_atom_set)
+ finally show "supp S = atom ` S" by simp
qed
-
lemma supp_at_insert:
- fixes S::"('a::at) set"
+ fixes a::"'a::at_base"
assumes a: "finite S"
shows "supp (insert a S) = supp a \<union> supp S"
using a by (simp add: supp_finite_at_set supp_at_base)
-
section {* A swapping operation for concrete atoms *}
definition