--- a/QuotList.thy Mon Dec 07 14:00:36 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,174 +0,0 @@
-theory QuotList
-imports QuotScript List
-begin
-
-fun
- list_rel
-where
- "list_rel R [] [] = True"
-| "list_rel R (x#xs) [] = False"
-| "list_rel R [] (x#xs) = False"
-| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"
-
-lemma list_equivp:
- assumes a: "equivp R"
- shows "equivp (list_rel R)"
- unfolding equivp_def
- apply(rule allI)+
- apply(induct_tac x y rule: list_induct2')
- apply(simp_all add: expand_fun_eq)
- apply(metis list_rel.simps(1) list_rel.simps(2))
- apply(metis list_rel.simps(1) list_rel.simps(2))
- apply(rule iffI)
- apply(rule allI)
- apply(case_tac x)
- apply(simp_all)
- using a
- apply(unfold equivp_def)
- apply(auto)[1]
- apply(metis list_rel.simps(4))
- done
-
-lemma list_rel_rel:
- assumes q: "Quotient R Abs Rep"
- shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"
- apply(induct r s rule: list_induct2')
- apply(simp_all)
- using Quotient_rel[OF q]
- apply(metis)
- done
-
-lemma list_quotient:
- assumes q: "Quotient R Abs Rep"
- shows "Quotient (list_rel R) (map Abs) (map Rep)"
- unfolding Quotient_def
- apply(rule conjI)
- apply(rule allI)
- apply(induct_tac a)
- apply(simp)
- apply(simp add: Quotient_abs_rep[OF q])
- apply(rule conjI)
- apply(rule allI)
- apply(induct_tac a)
- apply(simp)
- apply(simp)
- apply(simp add: Quotient_rep_reflp[OF q])
- apply(rule allI)+
- apply(rule list_rel_rel[OF q])
- done
-
-
-lemma cons_prs:
- assumes q: "Quotient R Abs Rep"
- shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"
-by (induct t) (simp_all add: Quotient_abs_rep[OF q])
-
-lemma cons_rsp:
- assumes q: "Quotient R Abs Rep"
- shows "(R ===> list_rel R ===> list_rel R) op # op #"
-by (auto)
-
-lemma nil_prs:
- assumes q: "Quotient R Abs Rep"
- shows "map Abs [] \<equiv> []"
-by (simp)
-
-lemma nil_rsp:
- assumes q: "Quotient R Abs Rep"
- shows "list_rel R [] []"
-by simp
-
-lemma map_prs:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
-by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
-
-lemma map_rsp:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"
-apply(simp)
-apply(rule allI)+
-apply(rule impI)
-apply(rule allI)+
-apply (induct_tac xa ya rule: list_induct2')
-apply simp_all
-done
-
-(* TODO: if the above is correct, we can remove this one *)
-lemma map_rsp_lo:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and a: "(R1 ===> R2) f1 f2"
- and b: "list_rel R1 l1 l2"
- shows "list_rel R2 (map f1 l1) (map f2 l2)"
-using b a
-by (induct l1 l2 rule: list_induct2') (simp_all)
-
-lemma foldr_prs:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
-by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
-
-lemma foldl_prs:
- assumes a: "Quotient R1 abs1 rep1"
- and b: "Quotient R2 abs2 rep2"
- shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
-by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
-
-lemma list_rel_empty: "list_rel R [] b \<Longrightarrow> length b = 0"
-by (induct b) (simp_all)
-
-lemma list_rel_len: "list_rel R a b \<Longrightarrow> length a = length b"
-apply (induct a arbitrary: b)
-apply (simp add: list_rel_empty)
-apply (case_tac b)
-apply simp_all
-done
-
-(* TODO: induct_tac doesn't accept 'arbitrary'.
- induct doesn't accept 'rule'.
- that's why the proof uses manual generalisation and needs assumptions
- both in conclusion for induction and in assumptions. *)
-lemma foldl_rsp:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"
-apply auto
-apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")
-apply simp
-apply (rule_tac x="xa" in spec)
-apply (rule_tac x="ya" in spec)
-apply (rule_tac xs="xb" and ys="yb" in list_induct2)
-apply (rule list_rel_len)
-apply (simp_all)
-done
-
-(* TODO: foldr_rsp should be similar *)
-
-
-
-
-(* TODO: Rest are unused *)
-
-lemma list_map_id:
- shows "map (\<lambda>x. x) = (\<lambda>x. x)"
- by simp
-
-lemma list_rel_eq:
- shows "list_rel (op =) \<equiv> (op =)"
-apply(rule eq_reflection)
-unfolding expand_fun_eq
-apply(rule allI)+
-apply(induct_tac x xa rule: list_induct2')
-apply(simp_all)
-done
-
-lemma list_rel_refl:
- assumes a: "\<And>x y. R x y = (R x = R y)"
- shows "list_rel R x x"
-by (induct x) (auto simp add: a)
-
-end