Quot/QuotMain.thy
changeset 597 8a1c8dc72b5c
child 600 5d932e7a856c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/QuotMain.thy	Mon Dec 07 14:09:50 2009 +0100
@@ -0,0 +1,1191 @@
+theory QuotMain
+imports QuotScript QuotList QuotProd Prove
+uses ("quotient_info.ML")
+     ("quotient.ML")
+     ("quotient_def.ML")
+begin
+
+
+locale QUOT_TYPE =
+  fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  and   Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
+  and   Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
+  assumes equivp: "equivp R"
+  and     rep_prop: "\<And>y. \<exists>x. Rep y = R x"
+  and     rep_inverse: "\<And>x. Abs (Rep x) = x"
+  and     abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
+  and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
+begin
+
+definition
+  ABS::"'a \<Rightarrow> 'b"
+where
+  "ABS x \<equiv> Abs (R x)"
+
+definition
+  REP::"'b \<Rightarrow> 'a"
+where
+  "REP a = Eps (Rep a)"
+
+lemma lem9:
+  shows "R (Eps (R x)) = R x"
+proof -
+  have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
+  then have "R x (Eps (R x))" by (rule someI)
+  then show "R (Eps (R x)) = R x"
+    using equivp unfolding equivp_def by simp
+qed
+
+theorem thm10:
+  shows "ABS (REP a) \<equiv> a"
+  apply  (rule eq_reflection)
+  unfolding ABS_def REP_def
+proof -
+  from rep_prop
+  obtain x where eq: "Rep a = R x" by auto
+  have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
+  also have "\<dots> = Abs (R x)" using lem9 by simp
+  also have "\<dots> = Abs (Rep a)" using eq by simp
+  also have "\<dots> = a" using rep_inverse by simp
+  finally
+  show "Abs (R (Eps (Rep a))) = a" by simp
+qed
+
+lemma REP_refl:
+  shows "R (REP a) (REP a)"
+unfolding REP_def
+by (simp add: equivp[simplified equivp_def])
+
+lemma lem7:
+  shows "(R x = R y) = (Abs (R x) = Abs (R y))"
+apply(rule iffI)
+apply(simp)
+apply(drule rep_inject[THEN iffD2])
+apply(simp add: abs_inverse)
+done
+
+theorem thm11:
+  shows "R r r' = (ABS r = ABS r')"
+unfolding ABS_def
+by (simp only: equivp[simplified equivp_def] lem7)
+
+
+lemma REP_ABS_rsp:
+  shows "R f (REP (ABS g)) = R f g"
+  and   "R (REP (ABS g)) f = R g f"
+by (simp_all add: thm10 thm11)
+
+lemma Quotient:
+  "Quotient R ABS REP"
+apply(unfold Quotient_def)
+apply(simp add: thm10)
+apply(simp add: REP_refl)
+apply(subst thm11[symmetric])
+apply(simp add: equivp[simplified equivp_def])
+done
+
+lemma R_trans:
+  assumes ab: "R a b"
+  and     bc: "R b c"
+  shows "R a c"
+proof -
+  have tr: "transp R" using equivp equivp_reflp_symp_transp[of R] by simp
+  moreover have ab: "R a b" by fact
+  moreover have bc: "R b c" by fact
+  ultimately show "R a c" unfolding transp_def by blast
+qed
+
+lemma R_sym:
+  assumes ab: "R a b"
+  shows "R b a"
+proof -
+  have re: "symp R" using equivp equivp_reflp_symp_transp[of R] by simp
+  then show "R b a" using ab unfolding symp_def by blast
+qed
+
+lemma R_trans2:
+  assumes ac: "R a c"
+  and     bd: "R b d"
+  shows "R a b = R c d"
+using ac bd
+by (blast intro: R_trans R_sym)
+
+lemma REPS_same:
+  shows "R (REP a) (REP b) \<equiv> (a = b)"
+proof -
+  have "R (REP a) (REP b) = (a = b)"
+  proof
+    assume as: "R (REP a) (REP b)"
+    from rep_prop
+    obtain x y
+      where eqs: "Rep a = R x" "Rep b = R y" by blast
+    from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp
+    then have "R x (Eps (R y))" using lem9 by simp
+    then have "R (Eps (R y)) x" using R_sym by blast
+    then have "R y x" using lem9 by simp
+    then have "R x y" using R_sym by blast
+    then have "ABS x = ABS y" using thm11 by simp
+    then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp
+    then show "a = b" using rep_inverse by simp
+  next
+    assume ab: "a = b"
+    have "reflp R" using equivp equivp_reflp_symp_transp[of R] by simp
+    then show "R (REP a) (REP b)" unfolding reflp_def using ab by auto
+  qed
+  then show "R (REP a) (REP b) \<equiv> (a = b)" by simp
+qed
+
+end
+
+section {* type definition for the quotient type *}
+
+(* the auxiliary data for the quotient types *)
+use "quotient_info.ML"
+
+declare [[map list = (map, list_rel)]]
+declare [[map * = (prod_fun, prod_rel)]]
+declare [[map "fun" = (fun_map, fun_rel)]]
+
+(* identity quotient is not here as it has to be applied first *)
+lemmas [quotient_thm] =
+  fun_quotient list_quotient prod_quotient
+
+lemmas [quotient_rsp] =
+  quot_rel_rsp nil_rsp cons_rsp foldl_rsp pair_rsp
+
+(* fun_map is not here since equivp is not true *)
+(* TODO: option, ... *)
+lemmas [quotient_equiv] =
+  identity_equivp list_equivp prod_equivp
+
+
+ML {* maps_lookup @{theory} "List.list" *}
+ML {* maps_lookup @{theory} "*" *}
+ML {* maps_lookup @{theory} "fun" *}
+
+
+(* definition of the quotient types *)
+(* FIXME: should be called quotient_typ.ML *)
+use "quotient.ML"
+
+
+(* lifting of constants *)
+use "quotient_def.ML"
+
+section {* Simset setup *}
+
+(* since HOL_basic_ss is too "big", we need to set up *)
+(* our own minimal simpset                            *)
+ML {*
+fun  mk_minimal_ss ctxt =
+  Simplifier.context ctxt empty_ss
+    setsubgoaler asm_simp_tac
+    setmksimps (mksimps [])
+*}
+
+section {* atomize *}
+
+lemma atomize_eqv[atomize]:
+  shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
+proof
+  assume "A \<equiv> B"
+  then show "Trueprop A \<equiv> Trueprop B" by unfold
+next
+  assume *: "Trueprop A \<equiv> Trueprop B"
+  have "A = B"
+  proof (cases A)
+    case True
+    have "A" by fact
+    then show "A = B" using * by simp
+  next
+    case False
+    have "\<not>A" by fact
+    then show "A = B" using * by auto
+  qed
+  then show "A \<equiv> B" by (rule eq_reflection)
+qed
+
+ML {*
+fun atomize_thm thm =
+let
+  val thm' = Thm.freezeT (forall_intr_vars thm)
+  val thm'' = ObjectLogic.atomize (cprop_of thm')
+in
+  @{thm equal_elim_rule1} OF [thm'', thm']
+end
+*}
+
+section {* infrastructure about id *}
+
+lemma prod_fun_id: "prod_fun id id \<equiv> id"
+  by (rule eq_reflection) (simp add: prod_fun_def)
+
+lemma map_id: "map id \<equiv> id"
+  apply (rule eq_reflection)
+  apply (rule ext)
+  apply (rule_tac list="x" in list.induct)
+  apply (simp_all)
+  done
+
+lemmas id_simps =
+  fun_map_id[THEN eq_reflection]
+  id_apply[THEN eq_reflection]
+  id_def[THEN eq_reflection,symmetric]
+  prod_fun_id map_id
+
+ML {*
+fun simp_ids thm =
+  MetaSimplifier.rewrite_rule @{thms id_simps} thm
+*}
+
+section {* Debugging infrastructure for testing tactics *}
+
+ML {*
+fun my_print_tac ctxt s i thm =
+let
+  val prem_str = nth (prems_of thm) (i - 1)
+                 |> Syntax.string_of_term ctxt
+                 handle Subscript => "no subgoal"
+  val _ = tracing (s ^ "\n" ^ prem_str)
+in
+  Seq.single thm
+end *}
+
+ML {*
+fun DT ctxt s tac i thm =
+let
+  val before_goal = nth (prems_of thm) (i - 1)
+                    |> Syntax.string_of_term ctxt
+  val before_msg = ["before: " ^ s, before_goal, "after: " ^ s]
+                   |> cat_lines
+in 
+  EVERY [tac i, my_print_tac ctxt before_msg i] thm
+end
+
+fun NDT ctxt s tac thm = tac thm  
+*}
+
+section {* Matching of terms and types *}
+
+ML {*
+fun matches_typ (ty, ty') =
+  case (ty, ty') of
+    (_, TVar _) => true
+  | (TFree x, TFree x') => x = x'
+  | (Type (s, tys), Type (s', tys')) => 
+       s = s' andalso 
+       if (length tys = length tys') 
+       then (List.all matches_typ (tys ~~ tys')) 
+       else false
+  | _ => false
+*}
+
+ML {*
+fun matches_term (trm, trm') = 
+   case (trm, trm') of 
+     (_, Var _) => true
+   | (Const (s, ty), Const (s', ty')) => s = s' andalso matches_typ (ty, ty')
+   | (Free (x, ty), Free (x', ty')) => x = x' andalso matches_typ (ty, ty')
+   | (Bound i, Bound j) => i = j
+   | (Abs (_, T, t), Abs (_, T', t')) => matches_typ (T, T') andalso matches_term (t, t')
+   | (t $ s, t' $ s') => matches_term (t, t') andalso matches_term (s, s') 
+   | _ => false
+*}
+
+section {* Infrastructure for collecting theorems for starting the lifting *}
+
+ML {*
+fun lookup_quot_data lthy qty =
+  let
+    val qty_name = fst (dest_Type qty)
+    val SOME quotdata = quotdata_lookup lthy qty_name
+    (* TODO: Should no longer be needed *)
+    val rty = Logic.unvarifyT (#rtyp quotdata)
+    val rel = #rel quotdata
+    val rel_eqv = #equiv_thm quotdata
+    val rel_refl = @{thm equivp_reflp} OF [rel_eqv]
+  in
+    (rty, rel, rel_refl, rel_eqv)
+  end
+*}
+
+ML {*
+fun lookup_quot_thms lthy qty_name =
+  let
+    val thy = ProofContext.theory_of lthy;
+    val trans2 = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".R_trans2")
+    val reps_same = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".REPS_same")
+    val absrep = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".thm10")
+    val quot = PureThy.get_thm thy ("Quotient_" ^ qty_name)
+  in
+    (trans2, reps_same, absrep, quot)
+  end
+*}
+
+section {* Regularization *} 
+
+(*
+Regularizing an rtrm means:
+ - quantifiers over a type that needs lifting are replaced by
+   bounded quantifiers, for example:
+      \<forall>x. P     \<Longrightarrow>     \<forall>x \<in> (Respects R). P  /  All (Respects R) P
+
+   the relation R is given by the rty and qty;
+ 
+ - abstractions over a type that needs lifting are replaced
+   by bounded abstractions:
+      \<lambda>x. P     \<Longrightarrow>     Ball (Respects R) (\<lambda>x. P)
+
+ - equalities over the type being lifted are replaced by
+   corresponding relations:
+      A = B     \<Longrightarrow>     A \<approx> B
+
+   example with more complicated types of A, B:
+      A = B     \<Longrightarrow>     (op = \<Longrightarrow> op \<approx>) A B
+*)
+
+ML {*
+(* builds the relation that is the argument of respects *)
+fun mk_resp_arg lthy (rty, qty) =
+let
+  val thy = ProofContext.theory_of lthy
+in  
+  if rty = qty
+  then HOLogic.eq_const rty
+  else
+    case (rty, qty) of
+      (Type (s, tys), Type (s', tys')) =>
+       if s = s' 
+       then let
+              val SOME map_info = maps_lookup thy s
+              val args = map (mk_resp_arg lthy) (tys ~~ tys')
+            in
+              list_comb (Const (#relfun map_info, dummyT), args) 
+            end  
+       else let  
+              val SOME qinfo = quotdata_lookup_thy thy s'
+              (* FIXME: check in this case that the rty and qty *)
+              (* FIXME: correspond to each other *)
+              val (s, _) = dest_Const (#rel qinfo)
+              (* FIXME: the relation should only be the string        *)
+              (* FIXME: and the type needs to be calculated as below; *)
+              (* FIXME: maybe one should actually have a term         *)
+              (* FIXME: and one needs to force it to have this type   *)
+            in
+              Const (s, rty --> rty --> @{typ bool})
+            end
+      | _ => HOLogic.eq_const dummyT 
+             (* FIXME: check that the types correspond to each other? *)
+end
+*}
+
+ML {*
+val mk_babs = Const (@{const_name Babs}, dummyT)
+val mk_ball = Const (@{const_name Ball}, dummyT)
+val mk_bex  = Const (@{const_name Bex}, dummyT)
+val mk_resp = Const (@{const_name Respects}, dummyT)
+*}
+
+ML {*
+(* - applies f to the subterm of an abstraction,   *)
+(*   otherwise to the given term,                  *)
+(* - used by regularize, therefore abstracted      *)
+(*   variables do not have to be treated specially *)
+
+fun apply_subt f trm1 trm2 =
+  case (trm1, trm2) of
+    (Abs (x, T, t), Abs (x', T', t')) => Abs (x, T, f t t')
+  | _ => f trm1 trm2
+
+(* the major type of All and Ex quantifiers *)
+fun qnt_typ ty = domain_type (domain_type ty)  
+*}
+
+ML {*
+(* produces a regularized version of rtm      *)
+(* - the result is still not completely typed *)
+(* - does not need any special treatment of   *)
+(*   bound variables                          *)
+
+fun regularize_trm lthy rtrm qtrm =
+  case (rtrm, qtrm) of
+    (Abs (x, ty, t), Abs (x', ty', t')) =>
+       let
+         val subtrm = Abs(x, ty, regularize_trm lthy t t')
+       in
+         if ty = ty'
+         then subtrm
+         else mk_babs $ (mk_resp $ mk_resp_arg lthy (ty, ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm lthy) t t'
+       in
+         if ty = ty'
+         then Const (@{const_name "All"}, ty) $ subtrm
+         else mk_ball $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm lthy) t t'
+       in
+         if ty = ty'
+         then Const (@{const_name "Ex"}, ty) $ subtrm
+         else mk_bex $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (* equalities need to be replaced by appropriate equivalence relations *) 
+    (Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
+         if ty = ty'
+         then rtrm
+         else mk_resp_arg lthy (domain_type ty, domain_type ty') 
+
+  | (* in this case we check whether the given equivalence relation is correct *) 
+    (rel, Const (@{const_name "op ="}, ty')) =>
+       let 
+         val exc = LIFT_MATCH "regularise (relation mismatch)"
+         val rel_ty = (fastype_of rel) handle TERM _ => raise exc 
+         val rel' = mk_resp_arg lthy (domain_type rel_ty, domain_type ty') 
+       in 
+         if rel' = rel
+         then rtrm
+         else raise exc
+       end  
+  | (_, Const (s, _)) =>
+       let 
+         fun same_name (Const (s, _)) (Const (s', _)) = (s = s')
+           | same_name _ _ = false
+       in
+         if same_name rtrm qtrm 
+         then rtrm 
+         else 
+           let 
+             fun exc1 s = LIFT_MATCH ("regularize (constant " ^ s ^ " not found)")
+             val exc2   = LIFT_MATCH ("regularize (constant mismatch)")
+             val thy = ProofContext.theory_of lthy
+             val rtrm' = (#rconst (qconsts_lookup thy s)) handle NotFound => raise (exc1 s) 
+           in 
+             if matches_term (rtrm, rtrm')
+             then rtrm
+             else raise exc2
+           end
+       end 
+
+  | (t1 $ t2, t1' $ t2') =>
+       (regularize_trm lthy t1 t1') $ (regularize_trm lthy t2 t2')
+
+  | (Free (x, ty), Free (x', ty')) => 
+       (* this case cannot arrise as we start with two fully atomized terms *)
+       raise (LIFT_MATCH "regularize (frees)")
+
+  | (Bound i, Bound i') =>
+       if i = i' 
+       then rtrm 
+       else raise (LIFT_MATCH "regularize (bounds mismatch)")
+
+  | (rt, qt) =>
+       raise (LIFT_MATCH "regularize (default)")
+*}
+
+ML {*
+fun equiv_tac ctxt =
+  REPEAT_ALL_NEW (FIRST' 
+    [resolve_tac (equiv_rules_get ctxt)])
+*}
+
+ML {*
+fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss)
+val equiv_solver = Simplifier.mk_solver' "Equivalence goal solver" equiv_solver_tac
+*}
+
+ML {*
+fun prep_trm thy (x, (T, t)) =
+  (cterm_of thy (Var (x, T)), cterm_of thy t)
+
+fun prep_ty thy (x, (S, ty)) =
+  (ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
+*}
+
+ML {*
+fun matching_prs thy pat trm =
+let
+  val univ = Unify.matchers thy [(pat, trm)]
+  val SOME (env, _) = Seq.pull univ
+  val tenv = Vartab.dest (Envir.term_env env)
+  val tyenv = Vartab.dest (Envir.type_env env)
+in
+  (map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
+end
+*}
+
+ML {*
+fun calculate_instance ctxt thm redex R1 R2 =
+let
+  val thy = ProofContext.theory_of ctxt
+  val goal = Const (@{const_name "equivp"}, dummyT) $ R2  
+             |> Syntax.check_term ctxt
+             |> HOLogic.mk_Trueprop 
+  val eqv_prem = Goal.prove ctxt [] [] goal (fn {context,...} => equiv_tac context 1)
+  val thm = (@{thm eq_reflection} OF [thm OF [eqv_prem]])
+  val R1c = cterm_of thy R1
+  val thmi = Drule.instantiate' [] [SOME R1c] thm
+  val inst = matching_prs thy (term_of (Thm.lhs_of thmi)) redex
+  val thm2 = Drule.eta_contraction_rule (Drule.instantiate inst thmi)
+in
+  SOME thm2
+end
+handle _ => NONE
+(* FIXME/TODO: what is the place where the exception can be raised: matching_prs? *)
+*}
+
+ML {*
+fun ball_bex_range_simproc ss redex =
+let
+  val ctxt = Simplifier.the_context ss
+in 
+ case redex of
+    (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $ 
+      (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
+        calculate_instance ctxt @{thm ball_reg_eqv_range} redex R1 R2
+  | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $ 
+      (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>  
+        calculate_instance ctxt @{thm bex_reg_eqv_range} redex R1 R2
+  | _ => NONE
+end
+*}
+
+lemma eq_imp_rel: 
+  shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
+by (simp add: equivp_reflp)
+
+(* FIXME/TODO: How does regularizing work? *)
+(* FIXME/TODO: needs to be adapted
+
+To prove that the raw theorem implies the regularised one, 
+we try in order:
+
+ - Reflexivity of the relation
+ - Assumption
+ - Elimnating quantifiers on both sides of toplevel implication
+ - Simplifying implications on both sides of toplevel implication
+ - Ball (Respects ?E) ?P = All ?P
+ - (\<And>x. ?R x \<Longrightarrow> ?P x \<longrightarrow> ?Q x) \<Longrightarrow> All ?P \<longrightarrow> Ball ?R ?Q
+
+*)
+ML {*
+fun regularize_tac ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val pat_ball = @{term "Ball (Respects (R1 ===> R2)) P"}
+  val pat_bex  = @{term "Bex (Respects (R1 ===> R2)) P"}
+  val simproc = Simplifier.simproc_i thy "" [pat_ball, pat_bex] (K (ball_bex_range_simproc))
+  val simpset = (mk_minimal_ss ctxt) 
+                       addsimps @{thms ball_reg_eqv bex_reg_eqv}
+                       addsimprocs [simproc] addSolver equiv_solver
+  (* TODO: Make sure that there are no list_rel, pair_rel etc involved *)
+  val eq_eqvs = map (fn x => @{thm eq_imp_rel} OF [x]) (equiv_rules_get ctxt)
+in
+  ObjectLogic.full_atomize_tac THEN'
+  simp_tac simpset THEN'
+  REPEAT_ALL_NEW (FIRST' [
+    rtac @{thm ball_reg_right},
+    rtac @{thm bex_reg_left},
+    resolve_tac (Inductive.get_monos ctxt),
+    rtac @{thm ball_all_comm},
+    rtac @{thm bex_ex_comm},
+    resolve_tac eq_eqvs,
+    simp_tac simpset])
+end
+*}
+
+section {* Injections of rep and abses *}
+
+(*
+Injecting repabs means:
+
+  For abstractions:
+  * If the type of the abstraction doesn't need lifting we recurse.
+  * If it does we add RepAbs around the whole term and check if the
+    variable needs lifting.
+    * If it doesn't then we recurse
+    * If it does we recurse and put 'RepAbs' around all occurences
+      of the variable in the obtained subterm. This in combination
+      with the RepAbs above will let us change the type of the
+      abstraction with rewriting.
+  For applications:
+  * If the term is 'Respects' applied to anything we leave it unchanged
+  * If the term needs lifting and the head is a constant that we know
+    how to lift, we put a RepAbs and recurse
+  * If the term needs lifting and the head is a free applied to subterms
+    (if it is not applied we treated it in Abs branch) then we
+    put RepAbs and recurse
+  * Otherwise just recurse.
+*)
+
+ML {*
+fun mk_repabs lthy (T, T') trm = 
+  Quotient_Def.get_fun repF lthy (T, T') 
+    $ (Quotient_Def.get_fun absF lthy (T, T') $ trm)
+*}
+
+ML {*
+(* bound variables need to be treated properly,    *)
+(* as the type of subterms need to be calculated   *)
+(* in the abstraction case                         *)
+
+fun inj_repabs_trm lthy (rtrm, qtrm) =
+ case (rtrm, qtrm) of
+    (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
+       Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
+
+  | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
+       Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
+
+  | (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
+       Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
+
+  | (Abs (x, T, t), Abs (x', T', t')) =>
+      let
+        val rty = fastype_of rtrm
+        val qty = fastype_of qtrm
+        val (y, s) = Term.dest_abs (x, T, t)
+        val (_, s') = Term.dest_abs (x', T', t')
+        val yvar = Free (y, T)
+        val result = Term.lambda_name (y, yvar) (inj_repabs_trm lthy (s, s'))
+      in
+        if rty = qty 
+        then result
+        else mk_repabs lthy (rty, qty) result
+      end
+
+  | (t $ s, t' $ s') =>  
+       (inj_repabs_trm lthy (t, t')) $ (inj_repabs_trm lthy (s, s'))
+
+  | (Free (_, T), Free (_, T')) => 
+        if T = T' 
+        then rtrm 
+        else mk_repabs lthy (T, T') rtrm
+
+  | (_, Const (@{const_name "op ="}, _)) => rtrm
+
+    (* FIXME: check here that rtrm is the corresponding definition for the const *)
+  | (_, Const (_, T')) =>
+      let
+        val rty = fastype_of rtrm
+      in 
+        if rty = T'                    
+        then rtrm
+        else mk_repabs lthy (rty, T') rtrm
+      end   
+  
+  | _ => raise (LIFT_MATCH "injection")
+*}
+
+section {* RepAbs Injection Tactic *}
+
+ML {*
+fun quotient_tac ctxt =
+  REPEAT_ALL_NEW (FIRST'
+    [rtac @{thm identity_quotient},
+     resolve_tac (quotient_rules_get ctxt)])
+*}
+
+(* solver for the simplifier *)
+ML {*
+fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
+val quotient_solver = Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac
+*}
+
+ML {*
+fun solve_quotient_assums ctxt thm =
+  let val gl = hd (Drule.strip_imp_prems (cprop_of thm)) in
+  thm OF [Goal.prove_internal [] gl (fn _ => quotient_tac ctxt 1)]
+  end
+  handle _ => error "solve_quotient_assums failed. Maybe a quotient_thm is missing"
+*}
+
+(* Not used *)
+(* It proves the Quotient assumptions by calling quotient_tac *)
+ML {*
+fun solve_quotient_assum i ctxt thm =
+  let
+    val tac =
+      (compose_tac (false, thm, i)) THEN_ALL_NEW
+      (quotient_tac ctxt);
+    val gc = Drule.strip_imp_concl (cprop_of thm);
+  in
+    Goal.prove_internal [] gc (fn _ => tac 1)
+  end
+  handle _ => error "solve_quotient_assum"
+*}
+
+definition
+  "QUOT_TRUE x \<equiv> True"
+
+ML {*
+fun find_qt_asm asms =
+  let
+    fun find_fun trm =
+      case trm of
+        (Const(@{const_name Trueprop}, _) $ (Const (@{const_name QUOT_TRUE}, _) $ _)) => true
+      | _ => false
+  in
+    case find_first find_fun asms of
+      SOME (_ $ (_ $ (f $ a))) => (f, a)
+    | SOME _ => error "find_qt_asm: no pair"
+    | NONE => error "find_qt_asm: no assumption"
+  end
+*}
+
+(*
+To prove that the regularised theorem implies the abs/rep injected, 
+we try:
+
+ 1) theorems 'trans2' from the appropriate QUOT_TYPE
+ 2) remove lambdas from both sides: lambda_rsp_tac
+ 3) remove Ball/Bex from the right hand side
+ 4) use user-supplied RSP theorems
+ 5) remove rep_abs from the right side
+ 6) reflexivity of equality
+ 7) split applications of lifted type (apply_rsp)
+ 8) split applications of non-lifted type (cong_tac)
+ 9) apply extentionality
+ A) reflexivity of the relation
+ B) assumption
+    (Lambdas under respects may have left us some assumptions)
+ C) proving obvious higher order equalities by simplifying fun_rel
+    (not sure if it is still needed?)
+ D) unfolding lambda on one side
+ E) simplifying (= ===> =) for simpler respectfulness
+
+*)
+
+lemma quot_true_dests:
+  shows QT_all: "QUOT_TRUE (All P) \<Longrightarrow> QUOT_TRUE P"
+  and   QT_ex:  "QUOT_TRUE (Ex P) \<Longrightarrow> QUOT_TRUE P"
+  and   QT_lam: "QUOT_TRUE (\<lambda>x. P x) \<Longrightarrow> (\<And>x. QUOT_TRUE  (P x))"
+  and   QT_ext: "(\<And>x. QUOT_TRUE (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (QUOT_TRUE a \<Longrightarrow> f = g)"
+apply(simp_all add: QUOT_TRUE_def ext)
+done
+
+lemma QUOT_TRUE_i: "(QUOT_TRUE (a :: bool) \<Longrightarrow> P) \<Longrightarrow> P"
+by (simp add: QUOT_TRUE_def)
+
+lemma QUOT_TRUE_imp: "QUOT_TRUE a \<equiv> QUOT_TRUE b"
+by (simp add: QUOT_TRUE_def)
+
+ML {*
+fun quot_true_conv1 ctxt fnctn ctrm =
+  case (term_of ctrm) of
+    (Const (@{const_name QUOT_TRUE}, _) $ x) =>
+    let
+      val fx = fnctn x;
+      val thy = ProofContext.theory_of ctxt;
+      val cx = cterm_of thy x;
+      val cfx = cterm_of thy fx;
+      val cxt = ctyp_of thy (fastype_of x);
+      val cfxt = ctyp_of thy (fastype_of fx);
+      val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QUOT_TRUE_imp}
+    in
+      Conv.rewr_conv thm ctrm
+    end
+*}
+
+ML {*
+fun quot_true_conv ctxt fnctn ctrm =
+  case (term_of ctrm) of
+    (Const (@{const_name QUOT_TRUE}, _) $ _) =>
+      quot_true_conv1 ctxt fnctn ctrm
+  | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm
+  | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm
+  | _ => Conv.all_conv ctrm
+*}
+
+ML {*
+fun quot_true_tac ctxt fnctn = CONVERSION
+    ((Conv.params_conv ~1 (fn ctxt =>
+       (Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt)
+*}
+
+ML {* fun dest_comb (f $ a) = (f, a) *}
+ML {* fun dest_bcomb ((_ $ l) $ r) = (l, r) *}
+(* TODO: Can this be done easier? *)
+ML {*
+fun unlam t =
+  case t of
+    (Abs a) => snd (Term.dest_abs a)
+  | _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0)))
+*}
+
+ML {*
+fun dest_fun_type (Type("fun", [T, S])) = (T, S)
+  | dest_fun_type _ = error "dest_fun_type"
+*}
+
+ML {*
+val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl
+*}
+
+ML {*
+val apply_rsp_tac =
+  Subgoal.FOCUS (fn {concl, asms, context,...} =>
+    case ((HOLogic.dest_Trueprop (term_of concl))) of
+      ((R2 $ (f $ x) $ (g $ y))) =>
+        (let
+          val (asmf, asma) = find_qt_asm (map term_of asms);
+        in
+          if (fastype_of asmf) = (fastype_of f) then no_tac else let
+            val ty_a = fastype_of x;
+            val ty_b = fastype_of asma;
+            val ty_c = range_type (type_of f);
+            val thy = ProofContext.theory_of context;
+            val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c];
+            val thm = Drule.instantiate' ty_inst [] @{thm apply_rsp}
+            val te = solve_quotient_assums context thm
+            val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y];
+            val thm = Drule.instantiate' [] t_inst te
+          in
+            compose_tac (false, thm, 2) 1
+          end
+        end
+        handle ERROR "find_qt_asm: no pair" => no_tac)
+    | _ => no_tac)
+*}
+ML {*
+fun SOLVES' tac = tac THEN_ALL_NEW (fn _ => no_tac)
+*}
+
+ML {*
+fun rep_abs_rsp_tac ctxt =
+  SUBGOAL (fn (goal, i) =>
+    case (bare_concl goal) of 
+      (rel $ _ $ (rep $ (abs $ _))) =>
+        (let
+           val thy = ProofContext.theory_of ctxt;
+           val (ty_a, ty_b) = dest_fun_type (fastype_of abs);
+           val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b];
+           val t_inst = map (SOME o (cterm_of thy)) [rel, abs, rep];
+           val thm = Drule.instantiate' ty_inst t_inst @{thm rep_abs_rsp}
+           val te = solve_quotient_assums ctxt thm
+         in
+           rtac te i
+         end
+         handle _ => no_tac)
+    | _ => no_tac)
+*}
+
+ML {*
+fun inj_repabs_tac_match ctxt trans2 = SUBGOAL (fn (goal, i) =>
+(case (bare_concl goal) of
+    (* (R1 ===> R2) (\<lambda>x\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *)
+  ((Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _))
+      => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
+
+    (* (op =) (Ball\<dots>) (Ball\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
+| (Const (@{const_name "op ="},_) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
+      => rtac @{thm ball_rsp} THEN' dtac @{thm QT_all}
+
+    (* (R1 ===> op =) (Ball\<dots>) (Ball\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> (Ball\<dots>x) = (Ball\<dots>y) *)
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
+      => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
+
+    (* (op =) (Bex\<dots>) (Bex\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
+| Const (@{const_name "op ="},_) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
+      => rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex}
+
+    (* (R1 ===> op =) (Bex\<dots>) (Bex\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> (Bex\<dots>x) = (Bex\<dots>y) *)
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
+      => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
+
+| (_ $
+    (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
+      => rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt]
+
+    (* reflexivity of operators arising from Cong_tac *)
+| Const (@{const_name "op ="},_) $ _ $ _ 
+      => rtac @{thm refl} ORELSE'
+          (resolve_tac trans2 THEN' RANGE [
+            quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)])
+
+(* TODO: These patterns should should be somehow combined and generalized... *)
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const (@{const_name fun_rel}, _) $ _ $ _)
+    => rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt
+
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const (@{const_name prod_rel}, _) $ _ $ _) $
+    (Const (@{const_name prod_rel}, _) $ _ $ _)
+    => rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt
+
+   (* respectfulness of constants; in particular of a simple relation *)
+| _ $ (Const _) $ (Const _)  (* fun_rel, list_rel, etc but not equality *)
+    => resolve_tac (rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt
+
+    (* R (\<dots>) (Rep (Abs \<dots>)) ----> R (\<dots>) (\<dots>) *)
+    (* observe ---> *)
+| _ $ _ $ _ 
+    => rep_abs_rsp_tac ctxt
+
+| _ => error "inj_repabs_tac not a relation"
+) i)
+*}
+
+ML {*
+fun inj_repabs_tac ctxt rel_refl trans2 =
+  (FIRST' [
+    inj_repabs_tac_match ctxt trans2,
+    (* R (t $ \<dots>) (t' $ \<dots>) ----> apply_rsp   provided type of t needs lifting *)
+    NDT ctxt "A" (apply_rsp_tac ctxt THEN'
+                (RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
+    (* (op =) (t $ \<dots>) (t' $ \<dots>) ----> Cong   provided type of t does not need lifting *)
+    (* merge with previous tactic *)
+    NDT ctxt "B" (Cong_Tac.cong_tac @{thm cong} THEN'
+                (RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
+    (* (op =) (\<lambda>x\<dots>) (\<lambda>x\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
+    NDT ctxt "C" (rtac @{thm ext} THEN' quot_true_tac ctxt unlam),
+    (* resolving with R x y assumptions *)
+    NDT ctxt "E" (atac),
+    (* reflexivity of the basic relations *)
+    (* R \<dots> \<dots> *)
+    NDT ctxt "D" (resolve_tac rel_refl)
+    ])
+*}
+
+ML {*
+fun all_inj_repabs_tac ctxt rel_refl trans2 =
+  REPEAT_ALL_NEW (inj_repabs_tac ctxt rel_refl trans2)
+*}
+
+section {* Cleaning of the theorem *}
+
+ML {*
+fun make_inst lhs t =
+  let
+    val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs;
+    val _ $ (Abs (_, _, g)) = t;
+    fun mk_abs i t =
+      if incr_boundvars i u aconv t then Bound i
+      else (case t of
+        t1 $ t2 => mk_abs i t1 $ mk_abs i t2
+      | Abs (s, T, t') => Abs (s, T, mk_abs (i + 1) t')
+      | Bound j => if i = j then error "make_inst" else t
+      | _ => t);
+  in (f, Abs ("x", T, mk_abs 0 g)) end;
+*}
+
+ML {*
+fun lambda_prs_simple_conv ctxt ctrm =
+  case (term_of ctrm) of
+   ((Const (@{const_name fun_map}, _) $ r1 $ (a2 as (Const (s,_)))) $ (Abs _)) =>
+     let
+       val thy = ProofContext.theory_of ctxt
+       val (ty_b, ty_a) = dest_fun_type (fastype_of r1)
+       val (ty_c, ty_d) = dest_fun_type (fastype_of a2)
+       val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d]
+       val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)]
+       val lpi = Drule.instantiate' tyinst tinst @{thm lambda_prs}
+       val te = @{thm eq_reflection} OF [solve_quotient_assums ctxt (solve_quotient_assums ctxt lpi)]
+       val ts = MetaSimplifier.rewrite_rule @{thms id_simps} te
+       val _ = tracing ("te rule:\n" ^ (Syntax.string_of_term ctxt (prop_of te)));
+       val tl = Thm.lhs_of ts
+       val (insp, inst) = make_inst (term_of tl) (term_of ctrm)
+       val ti = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) ts
+       val _ = if not (s = @{const_name "id"}) then
+                  (tracing "lambda_prs";
+                   tracing ("redex:\n" ^ (Syntax.string_of_term ctxt (term_of ctrm)));
+                   tracing ("lpi rule:\n" ^ (Syntax.string_of_term ctxt (prop_of lpi)));
+                   tracing ("te rule:\n" ^ (Syntax.string_of_term ctxt (prop_of te)));
+                   tracing ("ts rule:\n" ^ (Syntax.string_of_term ctxt (prop_of ts)));
+                   tracing ("instantiated rule:\n" ^ (Syntax.string_of_term ctxt (prop_of ti))))
+               else ()
+     in
+       Conv.rewr_conv ti ctrm
+     end
+  | _ => Conv.all_conv ctrm
+*}
+
+ML {*
+val lambda_prs_conv =
+  More_Conv.top_conv lambda_prs_simple_conv
+
+fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt)
+*}
+
+(*
+ Cleaning the theorem consists of three rewriting steps.
+ The first two need to be done before fun_map is unfolded
+
+ 1) lambda_prs:
+     (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))  ---->  f
+
+    Implemented as conversion since it is not a pattern.
+
+ 2) all_prs (the same for exists):
+     Ball (Respects R) ((abs ---> id) f)  ---->  All f
+
+    Rewriting with definitions from the argument defs
+     (rep ---> abs) oldConst ----> newconst
+
+ 3) Quotient_rel_rep:
+      Rel (Rep x) (Rep y)  ---->  x = y
+
+    Quotient_abs_rep:
+      Abs (Rep x)  ---->  x
+
+    id_simps; fun_map.simps
+*)
+
+ML {*
+fun clean_tac lthy =
+  let
+    val thy = ProofContext.theory_of lthy;
+    val defs = map (Thm.varifyT o symmetric o #def) (qconsts_dest thy)
+      (* FIXME: shouldn't the definitions already be varified? *)
+    val thms1 = @{thms all_prs ex_prs} @ defs
+    val thms2 = @{thms eq_reflection[OF fun_map.simps]} 
+                @ @{thms id_simps Quotient_abs_rep Quotient_rel_rep} 
+    fun simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
+  in
+    EVERY' [lambda_prs_tac lthy,
+            simp_tac (simps thms1),
+            simp_tac (simps thms2),
+            TRY o rtac refl]
+  end
+*}
+
+section {* Genralisation of free variables in a goal *}
+
+ML {*
+fun inst_spec ctrm =
+   Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}
+
+fun inst_spec_tac ctrms =
+  EVERY' (map (dtac o inst_spec) ctrms)
+
+fun all_list xs trm = 
+  fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm
+
+fun apply_under_Trueprop f = 
+  HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop
+
+fun gen_frees_tac ctxt =
+ SUBGOAL (fn (concl, i) =>
+  let
+    val thy = ProofContext.theory_of ctxt
+    val vrs = Term.add_frees concl []
+    val cvrs = map (cterm_of thy o Free) vrs
+    val concl' = apply_under_Trueprop (all_list vrs) concl
+    val goal = Logic.mk_implies (concl', concl)
+    val rule = Goal.prove ctxt [] [] goal 
+      (K (EVERY1 [inst_spec_tac (rev cvrs), atac]))
+  in
+    rtac rule i
+  end)  
+*}
+
+section {* General outline of the lifting procedure *}
+
+(* - A is the original raw theorem          *)
+(* - B is the regularized theorem           *)
+(* - C is the rep/abs injected version of B *) 
+(* - D is the lifted theorem                *)
+(*                                          *)
+(* - b is the regularization step           *)
+(* - c is the rep/abs injection step        *)
+(* - d is the cleaning part                 *)
+
+lemma lifting_procedure:
+  assumes a: "A"
+  and     b: "A \<Longrightarrow> B"
+  and     c: "B = C"
+  and     d: "C = D"
+  shows   "D"
+  using a b c d
+  by simp
+
+ML {*
+fun lift_match_error ctxt fun_str rtrm qtrm =
+let
+  val rtrm_str = Syntax.string_of_term ctxt rtrm
+  val qtrm_str = Syntax.string_of_term ctxt qtrm
+  val msg = [enclose "[" "]" fun_str, "The quotient theorem\n", qtrm_str, 
+             "and the lifted theorem\n", rtrm_str, "do not match"]
+in
+  error (space_implode " " msg)
+end
+*}
+
+ML {* 
+fun procedure_inst ctxt rtrm qtrm =
+let
+  val thy = ProofContext.theory_of ctxt
+  val rtrm' = HOLogic.dest_Trueprop rtrm
+  val qtrm' = HOLogic.dest_Trueprop qtrm
+  val reg_goal = 
+        Syntax.check_term ctxt (regularize_trm ctxt rtrm' qtrm')
+        handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
+  val _ = warning "Regularization done."
+  val inj_goal = 
+        Syntax.check_term ctxt (inj_repabs_trm ctxt (reg_goal, qtrm'))
+        handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
+  val _ = warning "RepAbs Injection done."
+in
+  Drule.instantiate' []
+    [SOME (cterm_of thy rtrm'),
+     SOME (cterm_of thy reg_goal),
+     SOME (cterm_of thy inj_goal)] @{thm lifting_procedure}
+end
+*}
+
+(* Left for debugging *)
+ML {*
+fun procedure_tac ctxt rthm =
+  ObjectLogic.full_atomize_tac
+  THEN' gen_frees_tac ctxt
+  THEN' CSUBGOAL (fn (gl, i) =>
+    let
+      val rthm' = atomize_thm rthm
+      val rule = procedure_inst ctxt (prop_of rthm') (term_of gl)
+      val thm = Drule.instantiate' [] [SOME (snd (Thm.dest_comb gl))] @{thm QUOT_TRUE_i}
+    in
+      (rtac rule THEN' RANGE [rtac rthm', (fn _ => all_tac), rtac thm]) i
+    end)
+*}
+
+ML {*
+(* FIXME/TODO should only get as arguments the rthm like procedure_tac *)
+
+fun lift_tac ctxt rthm =
+  ObjectLogic.full_atomize_tac
+  THEN' gen_frees_tac ctxt
+  THEN' CSUBGOAL (fn (gl, i) =>
+    let
+      val rthm' = atomize_thm rthm
+      val rule = procedure_inst ctxt (prop_of rthm') (term_of gl)
+      val rel_refl = map (fn x => @{thm equivp_reflp} OF [x]) (equiv_rules_get ctxt)
+      val quotients = quotient_rules_get ctxt
+      val trans2 = map (fn x => @{thm equals_rsp} OF [x]) quotients
+      val thm = Drule.instantiate' [] [SOME (snd (Thm.dest_comb gl))] @{thm QUOT_TRUE_i}
+    in
+      (rtac rule THEN'
+       RANGE [rtac rthm',
+              regularize_tac ctxt,
+              rtac thm THEN' all_inj_repabs_tac ctxt rel_refl trans2,
+              clean_tac ctxt]) i
+    end)
+*}
+
+end
+