--- a/Paper/Paper.thy Sat Sep 04 07:28:35 2010 +0800
+++ b/Paper/Paper.thy Sat Sep 04 07:39:38 2010 +0800
@@ -21,21 +21,21 @@
supp ("supp _" [78] 73) and
uminus ("-_" [78] 73) and
If ("if _ then _ else _" 10) and
- alpha_gen ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
+ alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and
abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup> _") and
fv ("fa'(_')" [100] 100) and
equal ("=") and
- alpha_abs ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
- Abs ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
+ alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
+ Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
Abs_lst ("[_]\<^bsub>list\<^esub>._") and
Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
Abs_res ("[_]\<^bsub>res\<^esub>._") and
Abs_print ("_\<^bsub>set\<^esub>._") and
Cons ("_::_" [78,77] 73) and
- supp_gen ("aux _" [1000] 10) and
+ supp_set ("aux _" [1000] 10) and
alpha_bn ("_ \<approx>bn _")
consts alpha_trm ::'a
@@ -647,7 +647,7 @@
%
\begin{equation}\label{alphaset}
\begin{array}{@ {\hspace{10mm}}r@ {\hspace{2mm}}l@ {\hspace{4mm}}r}
- \multicolumn{3}{l}{@{term "(as, x) \<approx>gen R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
+ \multicolumn{3}{l}{@{term "(as, x) \<approx>set R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
& @{term "fa(x) - as = fa(y) - bs"} & \mbox{\it (i)}\\
@{text "\<and>"} & @{term "(fa(x) - as) \<sharp>* p"} & \mbox{\it (ii)}\\
@{text "\<and>"} & @{text "(p \<bullet> x) R y"} & \mbox{\it (iii)}\\
@@ -730,7 +730,7 @@
types. For this we define
%
\begin{equation}
- @{term "abs_set (as, x) (bs, x) \<equiv> \<exists>p. alpha_gen (as, x) equal supp p (bs, x)"}
+ @{term "abs_set (as, x) (bs, x) \<equiv> \<exists>p. alpha_set (as, x) equal supp p (bs, x)"}
\end{equation}
\noindent
@@ -762,7 +762,7 @@
The elements in these types will be, respectively, written as:
\begin{center}
- @{term "Abs as x"} \hspace{5mm}
+ @{term "Abs_set as x"} \hspace{5mm}
@{term "Abs_res as x"} \hspace{5mm}
@{term "Abs_lst as x"}
\end{center}
@@ -832,7 +832,7 @@
function @{text aux}, taking an abstraction as argument:
%
\begin{center}
- @{thm supp_gen.simps[THEN eq_reflection, no_vars]}
+ @{thm supp_set.simps[THEN eq_reflection, no_vars]}
\end{center}
\noindent
@@ -842,7 +842,7 @@
This in turn means
%
\begin{center}
- @{term "supp (supp_gen (Abs as x)) \<subseteq> supp (Abs as x)"}
+ @{term "supp (supp_gen (Abs_set as x)) \<subseteq> supp (Abs_set as x)"}
\end{center}
\noindent
@@ -860,7 +860,7 @@
Theorem~\ref{suppabs}.
The method of first considering abstractions of the
- form @{term "Abs as x"} etc is motivated by the fact that
+ form @{term "Abs_set as x"} etc is motivated by the fact that
we can conveniently establish at the Isabelle/HOL level
properties about them. It would be
laborious to write custom ML-code that derives automatically such properties
@@ -1489,7 +1489,7 @@
lets us formally define the premise @{text P} for a non-empty binding clause as:
%
\begin{center}
- \mbox{@{term "P \<equiv> \<exists>p. (B, D) \<approx>gen R fa p (B', D')"}}\;.
+ \mbox{@{term "P \<equiv> \<exists>p. (B, D) \<approx>set R fa p (B', D')"}}\;.
\end{center}
\noindent