--- a/Nominal/Test.thy Tue Mar 23 08:20:13 2010 +0100
+++ b/Nominal/Test.thy Tue Mar 23 08:22:48 2010 +0100
@@ -6,87 +6,6 @@
ML {* val _ = recursive := false *}
-nominal_datatype lm =
- Vr "name"
-| Ap "lm" "lm"
-| Lm x::"name" l::"lm" bind x in l
-
-lemmas supp_fn' = lm.fv[simplified lm.supp]
-
-lemma
- fixes c::"'a::fs"
- assumes a1: "\<And>name c. P c (Vr name)"
- and a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
- and a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
- shows "P c lm"
-proof -
- have "\<And>p. P c (p \<bullet> lm)"
- apply(induct lm arbitrary: c rule: lm.induct)
- apply(simp only: lm.perm)
- apply(rule a1)
- apply(simp only: lm.perm)
- apply(rule a2)
- apply(blast)[1]
- apply(assumption)
- apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lm (p \<bullet> name) (p \<bullet> lm))")
- defer
- apply(simp add: fresh_def)
- apply(rule_tac X="supp (c, Lm (p \<bullet> name) (p \<bullet> lm))" in obtain_at_base)
- apply(simp add: supp_Pair finite_supp)
- apply(blast)
- apply(erule exE)
- apply(rule_tac t="p \<bullet> Lm name lm" and
- s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lm name lm" in subst)
- apply(simp del: lm.perm)
- apply(subst lm.perm)
- apply(subst (2) lm.perm)
- apply(rule flip_fresh_fresh)
- apply(simp add: fresh_def)
- apply(simp only: supp_fn')
- apply(simp)
- apply(simp add: fresh_Pair)
- apply(simp)
- apply(rule a3)
- apply(simp add: fresh_Pair)
- apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)
- apply(simp)
- done
- then have "P c (0 \<bullet> lm)" by blast
- then show "P c lm" by simp
-qed
-
-
-lemma
- fixes c::"'a::fs"
- assumes a1: "\<And>name c. P c (Vr name)"
- and a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
- and a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
- shows "P c lm"
-proof -
- have "\<And>p. P c (p \<bullet> lm)"
- apply(induct lm arbitrary: c rule: lm.induct)
- apply(simp only: lm.perm)
- apply(rule a1)
- apply(simp only: lm.perm)
- apply(rule a2)
- apply(blast)[1]
- apply(assumption)
- thm at_set_avoiding
- apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lm name lm) \<sharp>* q")
- apply(erule exE)
- apply(rule_tac t="p \<bullet> Lm name lm" and
- s="q \<bullet> p \<bullet> Lm name lm" in subst)
- defer
- apply(simp add: lm.perm)
- apply(rule a3)
- apply(simp add: eqvts fresh_star_def)
- apply(drule_tac x="q + p" in meta_spec)
- apply(simp)
- sorry
- then have "P c (0 \<bullet> lm)" by blast
- then show "P c lm" by simp
-qed
-
text {* example 1, equivalent to example 2 from Terms *}
nominal_datatype lam =