--- a/QuotMain.thy Sat Nov 28 14:33:04 2009 +0100
+++ b/QuotMain.thy Sat Nov 28 14:45:22 2009 +0100
@@ -877,32 +877,6 @@
fun SOLVES' tac = tac THEN_ALL_NEW (fn _ => no_tac)
*}
-ML {*
-fun inj_repabs_tac ctxt rty quot_thms rel_refl trans2 rsp_thms =
- (FIRST' [resolve_tac trans2,
- lambda_res_tac ctxt,
- rtac @{thm RES_FORALL_RSP},
- ball_rsp_tac ctxt,
- rtac @{thm RES_EXISTS_RSP},
- bex_rsp_tac ctxt,
- resolve_tac rsp_thms,
- rtac @{thm refl},
- (instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN'
- (RANGE [SOLVES' (quotient_tac quot_thms)])),
- (APPLY_RSP_TAC rty ctxt THEN'
- (RANGE [SOLVES' (quotient_tac quot_thms), SOLVES' (quotient_tac quot_thms)])),
- Cong_Tac.cong_tac @{thm cong},
- rtac @{thm ext},
- resolve_tac rel_refl,
- atac,
- (*seems not necessary:: SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps})),*)
- weak_lambda_res_tac ctxt,
- CHANGED o (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ}))])
-
-fun all_inj_repabs_tac ctxt rty quot_thms rel_refl trans2 rsp_thms =
- REPEAT_ALL_NEW (inj_repabs_tac ctxt rty quot_thms rel_refl trans2 rsp_thms)
-*}
-
(*
To prove that the regularised theorem implies the abs/rep injected,
we try:
@@ -927,71 +901,71 @@
*)
ML {*
-fun inj_repabs_tac' ctxt rty quot_thms rel_refl trans2 rsp_thms =
+fun inj_repabs_tac ctxt rty quot_thms rel_refl trans2 rsp_thms =
(FIRST' [
- (K (print_tac "start")) THEN' (K no_tac),
+ (*(K (print_tac "start")) THEN' (K no_tac), *)
(* "cong" rule of the of the relation *)
(* a \<approx> b = c \<approx> d ----> \<lbrakk>a \<approx> c; b \<approx> d\<rbrakk> *)
- DT ctxt "1" (resolve_tac trans2),
+ NDT ctxt "1" (resolve_tac trans2),
(* (R1 ===> R2) (\<lambda>x\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *)
- DT ctxt "2" (lambda_res_tac ctxt),
+ NDT ctxt "2" (lambda_res_tac ctxt),
(* (op =) (Ball\<dots>) (Ball\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
- DT ctxt "3" (rtac @{thm RES_FORALL_RSP}),
+ NDT ctxt "3" (rtac @{thm RES_FORALL_RSP}),
(* (R1 ===> R2) (Ball\<dots>) (Ball\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (Ball\<dots>x) (Ball\<dots>y) *)
- DT ctxt "4" (ball_rsp_tac ctxt),
+ NDT ctxt "4" (ball_rsp_tac ctxt),
(* (op =) (Bex\<dots>) (Bex\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
- DT ctxt "5" (rtac @{thm RES_EXISTS_RSP}),
+ NDT ctxt "5" (rtac @{thm RES_EXISTS_RSP}),
(* (R1 ===> R2) (Bex\<dots>) (Bex\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (Bex\<dots>x) (Bex\<dots>y) *)
- DT ctxt "6" (bex_rsp_tac ctxt),
+ NDT ctxt "6" (bex_rsp_tac ctxt),
(* respectfulness of constants *)
- DT ctxt "7" (resolve_tac rsp_thms),
+ NDT ctxt "7" (resolve_tac rsp_thms),
(* reflexivity of operators arising from Cong_tac *)
- DT ctxt "8" (rtac @{thm refl}),
+ NDT ctxt "8" (rtac @{thm refl}),
(* R (\<dots>) (Rep (Abs \<dots>)) ----> R (\<dots>) (\<dots>) *)
(* observe ---> *)
- DT ctxt "9" ((instantiate_tac @{thm REP_ABS_RSP(1)} ctxt
+ NDT ctxt "9" ((instantiate_tac @{thm REP_ABS_RSP(1)} ctxt
THEN' (RANGE [SOLVES' (quotient_tac quot_thms)]))),
(* R (t $ \<dots>) (t' $ \<dots>) \<Longrightarrow> APPLY_RSP provided type of t needs lifting *)
- DT ctxt "A" ((APPLY_RSP_TAC rty ctxt THEN'
+ NDT ctxt "A" ((APPLY_RSP_TAC rty ctxt THEN'
(RANGE [SOLVES' (quotient_tac quot_thms), SOLVES' (quotient_tac quot_thms)]))),
(* (op =) (t $ \<dots>) (t' $ \<dots>) \<Longrightarrow> Cong provided type of t does not need lifting *)
(* merge with previous tactic *)
- DT ctxt "B" (Cong_Tac.cong_tac @{thm cong}),
+ NDT ctxt "B" (Cong_Tac.cong_tac @{thm cong}),
(* (op =) (\<lambda>x\<dots>) (\<lambda>x\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
- DT ctxt "C" (rtac @{thm ext}),
+ NDT ctxt "C" (rtac @{thm ext}),
(* reflexivity of the basic relations *)
- DT ctxt "D" (resolve_tac rel_refl),
+ NDT ctxt "D" (resolve_tac rel_refl),
(* resolving with R x y assumptions *)
- DT ctxt "E" (atac),
+ NDT ctxt "E" (atac),
- (* seems not necessay:: DT ctxt "F" (SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))),*)
+ (* seems not necessay:: NDT ctxt "F" (SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))),*)
(* (R1 ===> R2) (\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *)
(* (R1 ===> R2) (\<lambda>x\<dots>) (\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *)
- DT ctxt "G" (weak_lambda_res_tac ctxt),
+ NDT ctxt "G" (weak_lambda_res_tac ctxt),
(* (op =) ===> (op =) \<Longrightarrow> (op =), needed in order to apply respectfulness theorems *)
(* global simplification *)
- DT ctxt "H" (CHANGED o (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ})))])
+ NDT ctxt "H" (CHANGED o (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ})))])
*}
ML {*
-fun all_inj_repabs_tac' ctxt rty quot_thms rel_refl trans2 rsp_thms =
- REPEAT_ALL_NEW (inj_repabs_tac' ctxt rty quot_thms rel_refl trans2 rsp_thms)
+fun all_inj_repabs_tac ctxt rty quot_thms rel_refl trans2 rsp_thms =
+ REPEAT_ALL_NEW (inj_repabs_tac ctxt rty quot_thms rel_refl trans2 rsp_thms)
*}