--- a/Nominal/Ex/Let.thy Tue Dec 28 00:20:50 2010 +0000
+++ b/Nominal/Ex/Let.thy Tue Dec 28 19:51:25 2010 +0000
@@ -30,278 +30,7 @@
thm trm_assn.exhaust
thm trm_assn.strong_exhaust
-lemma
- fixes t::trm
- and as::assn
- and c::"'a::fs"
- assumes a1: "\<And>x c. P1 c (Var x)"
- and a2: "\<And>t1 t2 c. \<lbrakk>\<And>d. P1 d t1; \<And>d. P1 d t2\<rbrakk> \<Longrightarrow> P1 c (App t1 t2)"
- and a3: "\<And>x t c. \<lbrakk>{atom x} \<sharp>* c; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Lam x t)"
- and a4: "\<And>as t c. \<lbrakk>set (bn as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let as t)"
- and a5: "\<And>c. P2 c ANil"
- and a6: "\<And>x t as c. \<lbrakk>\<And>d. P1 d t; \<And>d. P2 d as\<rbrakk> \<Longrightarrow> P2 c (ACons x t as)"
- shows "P1 c t" "P2 c as"
-using assms
-apply(induction_schema)
-apply(rule_tac y="t" in trm_assn.strong_exhaust(1))
-apply(blast)
-apply(blast)
-apply(blast)
-apply(blast)
-apply(rule_tac ya="as" in trm_assn.strong_exhaust(2))
-apply(blast)
-apply(blast)
-apply(relation "measure (sum_case (\<lambda>y. size (snd y)) (\<lambda>z. size (snd z)))")
-apply(simp_all add: trm_assn.size)
-done
-
-text {* *}
-
-
(*
-proof -
- have x: "\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t)"
- and y: "\<And>(p::perm) (c::'a::fs). P2 c (p \<bullet> as)"
- apply(induct rule: trm_assn.inducts)
- apply(simp)
- apply(rule a1)
- apply(simp)
- apply(rule a2)
- apply(assumption)
- apply(assumption)
- -- "lam case"
- apply(simp)
- apply(subgoal_tac "\<exists>q. (q \<bullet> {atom (p \<bullet> name)}) \<sharp>* c \<and> supp (Lam (p \<bullet> name) (p \<bullet> trm)) \<sharp>* q")
- apply(erule exE)
- apply(erule conjE)
- apply(drule supp_perm_eq[symmetric])
- apply(simp)
- apply(thin_tac "?X = ?Y")
- apply(rule a3)
- apply(simp add: atom_eqvt permute_set_eq)
- apply(simp only: permute_plus[symmetric])
- apply(rule at_set_avoiding2)
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: freshs fresh_star_def)
- --"let case"
- apply(simp)
- thm trm_assn.eq_iff
- thm eq_iffs
- apply(subgoal_tac "\<exists>q. (q \<bullet> set (bn (p \<bullet> assn))) \<sharp>* c \<and> supp (Abs_lst (bn (p \<bullet> assn)) (p \<bullet> trm)) \<sharp>* q")
- apply(erule exE)
- apply(erule conjE)
- prefer 2
- apply(rule at_set_avoiding2)
- apply(rule fin_bn)
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: abs_fresh)
- apply(rule_tac t = "Let (p \<bullet> assn) (p \<bullet> trm)" in subst)
- prefer 2
- apply(rule a4)
- prefer 4
- apply(simp add: eq_iffs)
- apply(rule conjI)
- prefer 2
- apply(simp add: set_eqvt trm_assn.fv_bn_eqvt)
- apply(subst permute_plus[symmetric])
- apply(blast)
- prefer 2
- apply(simp add: eq_iffs)
- thm eq_iffs
- apply(subst permute_plus[symmetric])
- apply(blast)
- apply(simp add: supps)
- apply(simp add: fresh_star_def freshs)
- apply(drule supp_perm_eq[symmetric])
- apply(simp)
- apply(simp add: eq_iffs)
- apply(simp)
- apply(thin_tac "?X = ?Y")
- apply(rule a4)
- apply(simp add: set_eqvt trm_assn.fv_bn_eqvt)
- apply(subst permute_plus[symmetric])
- apply(blast)
- apply(subst permute_plus[symmetric])
- apply(blast)
- apply(simp add: supps)
- thm at_set_avoiding2
- --"HERE"
- apply(rule at_set_avoiding2)
- apply(rule fin_bn)
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: fresh_star_def freshs)
- apply(rule ballI)
- apply(simp add: eqvts permute_bn)
- apply(rule a5)
- apply(simp add: permute_bn)
- apply(rule a6)
- apply simp
- apply simp
- done
- then have a: "P1 c (0 \<bullet> t)" by blast
- have "P2 c (permute_bn 0 (0 \<bullet> l))" using b' by blast
- then show "P1 c t" and "P2 c l" using a permute_bn_zero by simp_all
-qed
-*)
-
-text {* *}
-
-(*
-
-primrec
- permute_bn_raw
-where
- "permute_bn_raw pi (Lnil_raw) = Lnil_raw"
-| "permute_bn_raw pi (Lcons_raw a t l) = Lcons_raw (pi \<bullet> a) t (permute_bn_raw pi l)"
-
-quotient_definition
- "permute_bn :: perm \<Rightarrow> lts \<Rightarrow> lts"
-is
- "permute_bn_raw"
-
-lemma [quot_respect]: "((op =) ===> alpha_lts_raw ===> alpha_lts_raw) permute_bn_raw permute_bn_raw"
- apply simp
- apply clarify
- apply (erule alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.inducts)
- apply (rule TrueI)+
- apply simp_all
- apply (rule_tac [!] alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.intros)
- apply simp_all
- done
-
-lemmas permute_bn = permute_bn_raw.simps[quot_lifted]
-
-lemma permute_bn_zero:
- "permute_bn 0 a = a"
- apply(induct a rule: trm_lts.inducts(2))
- apply(rule TrueI)+
- apply(simp_all add:permute_bn)
- done
-
-lemma permute_bn_add:
- "permute_bn (p + q) a = permute_bn p (permute_bn q a)"
- oops
-
-lemma permute_bn_alpha_bn: "alpha_bn lts (permute_bn q lts)"
- apply(induct lts rule: trm_lts.inducts(2))
- apply(rule TrueI)+
- apply(simp_all add:permute_bn eqvts trm_lts.eq_iff)
- done
-
-lemma perm_bn:
- "p \<bullet> bn l = bn(permute_bn p l)"
- apply(induct l rule: trm_lts.inducts(2))
- apply(rule TrueI)+
- apply(simp_all add:permute_bn eqvts)
- done
-
-lemma fv_perm_bn:
- "fv_bn l = fv_bn (permute_bn p l)"
- apply(induct l rule: trm_lts.inducts(2))
- apply(rule TrueI)+
- apply(simp_all add:permute_bn eqvts)
- done
-
-lemma Lt_subst:
- "supp (Abs_lst (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
- apply (simp add: trm_lts.eq_iff permute_bn_alpha_bn)
- apply (rule_tac x="q" in exI)
- apply (simp add: alphas)
- apply (simp add: perm_bn[symmetric])
- apply(rule conjI)
- apply(drule supp_perm_eq)
- apply(simp add: abs_eq_iff)
- apply(simp add: alphas_abs alphas)
- apply(drule conjunct1)
- apply (simp add: trm_lts.supp)
- apply(simp add: supp_abs)
- apply (simp add: trm_lts.supp)
- done
-
-
-lemma fin_bn:
- "finite (set (bn l))"
- apply(induct l rule: trm_lts.inducts(2))
- apply(simp_all add:permute_bn eqvts)
- done
-
-thm trm_lts.inducts[no_vars]
-
-lemma
- fixes t::trm
- and l::lts
- and c::"'a::fs"
- assumes a1: "\<And>name c. P1 c (Vr name)"
- and a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
- and a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)"
- and a4: "\<And>lts trm c. \<lbrakk>set (bn lts) \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
- and a5: "\<And>c. P2 c Lnil"
- and a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
- shows "P1 c t" and "P2 c l"
-proof -
- have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
- b': "(\<And>(p::perm) (q::perm) (c::'a::fs). P2 c (permute_bn p (q \<bullet> l)))"
- apply(induct rule: trm_lts.inducts)
- apply(simp)
- apply(rule a1)
- apply(simp)
- apply(rule a2)
- apply(simp)
- apply(simp)
- apply(simp)
- apply(subgoal_tac "\<exists>q. (q \<bullet> (atom (p \<bullet> name))) \<sharp> c \<and> supp (Lm (p \<bullet> name) (p \<bullet> trm)) \<sharp>* q")
- apply(erule exE)
- apply(rule_tac t="Lm (p \<bullet> name) (p \<bullet> trm)"
- and s="q\<bullet> Lm (p \<bullet> name) (p \<bullet> trm)" in subst)
- apply(rule supp_perm_eq)
- apply(simp)
- apply(simp)
- apply(rule a3)
- apply(simp add: atom_eqvt)
- apply(subst permute_plus[symmetric])
- apply(blast)
- apply(rule at_set_avoiding2_atom)
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: fresh_def)
- apply(simp add: trm_lts.fv[simplified trm_lts.supp])
- apply(simp)
- apply(subgoal_tac "\<exists>q. (q \<bullet> set (bn (p \<bullet> lts))) \<sharp>* c \<and> supp (Abs_lst (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
- apply(erule exE)
- apply(erule conjE)
- thm Lt_subst
- apply(subst Lt_subst)
- apply assumption
- apply(rule a4)
- apply(simp add:perm_bn[symmetric])
- apply(simp add: eqvts)
- apply (simp add: fresh_star_def fresh_def)
- apply(rotate_tac 1)
- apply(drule_tac x="q + p" in meta_spec)
- apply(simp)
- apply(rule at_set_avoiding2)
- apply(rule fin_bn)
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: fresh_star_def fresh_def supp_abs)
- apply(simp add: eqvts permute_bn)
- apply(rule a5)
- apply(simp add: permute_bn)
- apply(rule a6)
- apply simp
- apply simp
- done
- then have a: "P1 c (0 \<bullet> t)" by blast
- have "P2 c (permute_bn 0 (0 \<bullet> l))" using b' by blast
- then show "P1 c t" and "P2 c l" using a permute_bn_zero by simp_all
-qed
-
-
-
lemma lets_bla:
"x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
by (simp add: trm_lts.eq_iff)