Nominal/nominal_library.ML
changeset 2568 8193bbaa07fe
parent 2560 82e37a4595c7
child 2569 94750b31a97d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/nominal_library.ML	Sun Nov 14 16:34:47 2010 +0000
@@ -0,0 +1,372 @@
+(*  Title:      nominal_library.ML
+    Author:     Christian Urban
+
+  Basic functions for nominal.
+*)
+
+signature NOMINAL_LIBRARY =
+sig
+  val is_true: term -> bool
+
+  val last2: 'a list -> 'a * 'a
+
+  val dest_listT: typ -> typ
+
+  val size_const: typ -> term 
+
+  val sum_case_const: typ -> typ -> typ -> term
+  val mk_sum_case: term -> term -> term
+ 
+  val mk_minus: term -> term
+  val mk_plus: term -> term -> term
+
+  val perm_ty: typ -> typ 
+  val mk_perm_ty: typ -> term -> term -> term
+  val mk_perm: term -> term -> term
+  val dest_perm: term -> term * term
+
+  val mk_sort_of: term -> term
+  val atom_ty: typ -> typ
+  val mk_atom_ty: typ -> term -> term
+  val mk_atom: term -> term
+
+  val supp_ty: typ -> typ
+  val supp_const: typ -> term
+  val mk_supp_ty: typ -> term -> term
+  val mk_supp: term -> term
+
+  val supp_rel_ty: typ -> typ
+  val supp_rel_const: typ -> term
+  val mk_supp_rel_ty: typ -> term -> term -> term
+  val mk_supp_rel: term -> term -> term		       
+
+  val supports_const: typ -> term
+  val mk_supports_ty: typ -> term -> term -> term
+  val mk_supports: term -> term -> term
+
+  val finite_const: typ -> term
+  val mk_finite_ty: typ -> term -> term
+  val mk_finite: term -> term
+
+
+  val mk_equiv: thm -> thm
+  val safe_mk_equiv: thm -> thm
+
+  val mk_diff: term * term -> term
+  val mk_append: term * term -> term
+  val mk_union: term * term -> term
+  val fold_union: term list -> term
+  val fold_append: term list -> term
+  val mk_conj: term * term -> term
+  val fold_conj: term list -> term
+
+  (* fresh arguments for a term *)
+  val fresh_args: Proof.context -> term -> term list
+
+  (* datatype operations *)
+  type cns_info = (term * typ * typ list * bool list) list
+
+  val all_dtyps: Datatype_Aux.descr -> (string * sort) list -> typ list
+  val nth_dtyp: Datatype_Aux.descr -> (string * sort) list -> int -> typ
+  val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> cns_info list
+  val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> cns_info
+  val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list
+
+  (* tactics for function package *)
+  val pat_completeness_simp: thm list -> Proof.context -> tactic
+  val prove_termination: thm list -> Proof.context -> Function.info * local_theory
+
+  (* transformations of premises in inductions *)
+  val transform_prem1: Proof.context -> string list -> thm -> thm
+  val transform_prem2: Proof.context -> string list -> thm -> thm
+
+  (* transformation into the object logic *)
+  val atomize: thm -> thm
+
+end
+
+
+structure Nominal_Library: NOMINAL_LIBRARY =
+struct
+
+fun is_true @{term "Trueprop True"} = true
+  | is_true _ = false 
+
+fun last2 [] = raise Empty
+  | last2 [_] = raise Empty
+  | last2 [x, y] = (x, y)
+  | last2 (_ :: xs) = last2 xs
+
+fun dest_listT (Type (@{type_name list}, [T])) = T
+  | dest_listT T = raise TYPE ("dest_listT: list type expected", [T], [])
+
+fun size_const ty = Const (@{const_name size}, ty --> @{typ nat})
+
+fun sum_case_const ty1 ty2 ty3 = 
+  Const (@{const_name sum_case}, [ty1 --> ty3, ty2 --> ty3, Type (@{type_name sum}, [ty1, ty2])] ---> ty3)
+fun mk_sum_case trm1 trm2 =
+  let
+    val ([ty1], ty3) = strip_type (fastype_of trm1)
+    val ty2 = domain_type (fastype_of trm2)
+  in
+    sum_case_const ty1 ty2 ty3 $ trm1 $ trm2
+  end 
+
+
+
+fun mk_minus p = @{term "uminus::perm => perm"} $ p
+
+fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q
+
+fun perm_ty ty = @{typ "perm"} --> ty --> ty
+fun mk_perm_ty ty p trm = Const (@{const_name "permute"}, perm_ty ty) $ p $ trm
+fun mk_perm p trm = mk_perm_ty (fastype_of trm) p trm
+
+fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t)
+  | dest_perm t = raise TERM ("dest_perm", [t]);
+
+fun mk_sort_of t = @{term "sort_of"} $ t;
+
+fun atom_ty ty = ty --> @{typ "atom"};
+fun mk_atom_ty ty t = Const (@{const_name "atom"}, atom_ty ty) $ t;
+fun mk_atom t = mk_atom_ty (fastype_of t) t;
+
+
+fun supp_ty ty = ty --> @{typ "atom set"};
+fun supp_const ty = Const (@{const_name supp}, supp_ty ty)
+fun mk_supp_ty ty t = supp_const ty $ t
+fun mk_supp t = mk_supp_ty (fastype_of t) t
+
+fun supp_rel_ty ty = ([ty, ty] ---> @{typ bool}) --> ty --> @{typ "atom set"};
+fun supp_rel_const ty = Const (@{const_name supp_rel}, supp_rel_ty ty)
+fun mk_supp_rel_ty ty r t = supp_rel_const ty $ r $ t
+fun mk_supp_rel r t = mk_supp_rel_ty (fastype_of t) r t
+
+fun supports_const ty = Const (@{const_name supports}, [@{typ "atom set"}, ty] ---> @{typ bool});
+fun mk_supports_ty ty t1 t2 = supports_const ty $ t1 $ t2;
+fun mk_supports t1 t2 = mk_supports_ty (fastype_of t2) t1 t2;
+
+fun finite_const ty = Const (@{const_name finite}, ty --> @{typ bool})
+fun mk_finite_ty ty t = finite_const ty $ t
+fun mk_finite t = mk_finite_ty (fastype_of t) t
+
+
+fun mk_equiv r = r RS @{thm eq_reflection};
+fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r;
+
+
+(* functions that construct differences, appends and unions
+   but avoid producing empty atom sets or empty atom lists *)
+
+fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"}
+  | mk_diff (t1, @{term "{}::atom set"}) = t1
+  | mk_diff (@{term "set ([]::atom list)"}, _) = @{term "set ([]::atom list)"}
+  | mk_diff (t1, @{term "set ([]::atom list)"}) = t1
+  | mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2)
+
+fun mk_append (t1, @{term "[]::atom list"}) = t1
+  | mk_append (@{term "[]::atom list"}, t2) = t2
+  | mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2) 
+
+fun mk_union (t1, @{term "{}::atom set"}) = t1
+  | mk_union (@{term "{}::atom set"}, t2) = t2
+  | mk_union (t1, @{term "set ([]::atom list)"}) = t1
+  | mk_union (@{term "set ([]::atom list)"}, t2) = t2
+  | mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2)  
+ 
+fun fold_union trms = fold_rev (curry mk_union) trms @{term "{}::atom set"}
+fun fold_append trms = fold_rev (curry mk_append) trms @{term "[]::atom list"}
+
+fun mk_conj (t1, @{term "True"}) = t1
+  | mk_conj (@{term "True"}, t2) = t2
+  | mk_conj (t1, t2) = HOLogic.mk_conj (t1, t2)
+
+fun fold_conj trms = fold_rev (curry mk_conj) trms @{term "True"}
+
+
+(* produces fresh arguments for a term *)
+
+fun fresh_args ctxt f =
+    f |> fastype_of
+      |> binder_types
+      |> map (pair "z")
+      |> Variable.variant_frees ctxt [f]
+      |> map Free
+
+
+
+(** datatypes **)
+
+(* constructor infos *)
+type cns_info = (term * typ * typ list * bool list) list
+
+(* returns the type of the nth datatype *)
+fun all_dtyps descr sorts = 
+  map (fn n => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n)) (0 upto (length descr - 1))
+
+fun nth_dtyp descr sorts n = 
+  Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n);
+
+(* returns info about constructors in a datatype *)
+fun all_dtyp_constrs_info descr = 
+  map (fn (_, (ty, vs, constrs)) => map (pair (ty, vs)) constrs) descr
+
+(* returns the constants of the constructors plus the 
+   corresponding type and types of arguments *)
+fun all_dtyp_constrs_types descr sorts = 
+  let
+    fun aux ((ty_name, vs), (cname, args)) =
+      let
+        val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs
+        val ty = Type (ty_name, vs_tys)
+        val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args
+        val is_rec = map Datatype_Aux.is_rec_type args
+      in
+        (Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec)
+      end
+  in
+    map (map aux) (all_dtyp_constrs_info descr)
+  end
+
+fun nth_dtyp_constrs_types descr sorts n =
+  nth (all_dtyp_constrs_types descr sorts) n
+
+
+(* generates for every datatype a name str ^ dt_name 
+   plus and index for multiple occurences of a string *)
+fun prefix_dt_names descr sorts str = 
+  let
+    fun get_nth_name (i, _) = 
+      Datatype_Aux.name_of_typ (nth_dtyp descr sorts i) 
+  in
+    Datatype_Prop.indexify_names 
+      (map (prefix str o get_nth_name) descr)
+  end
+
+
+
+(** function package tactics **)
+
+fun pat_completeness_simp simps lthy =
+  let
+    val simp_set = HOL_basic_ss addsimps (@{thms sum.inject sum.distinct} @ simps)
+  in
+    Pat_Completeness.pat_completeness_tac lthy 1
+      THEN ALLGOALS (asm_full_simp_tac simp_set)
+  end
+
+
+fun prove_termination_tac size_simps ctxt =
+  let
+    val natT = @{typ nat}
+    fun prod_size_const fT sT = 
+      let
+        val fT_fun = fT --> natT
+        val sT_fun = sT --> natT
+        val prodT = Type (@{type_name prod}, [fT, sT])
+      in
+        Const (@{const_name prod_size}, [fT_fun, sT_fun, prodT] ---> natT)
+      end
+
+    fun mk_size_measure T =
+      case T of    
+        (Type (@{type_name Sum_Type.sum}, [fT, sT])) =>
+           SumTree.mk_sumcase fT sT natT (mk_size_measure fT) (mk_size_measure sT)
+      | (Type (@{type_name Product_Type.prod}, [fT, sT])) =>
+           prod_size_const fT sT $ (mk_size_measure fT) $ (mk_size_measure sT)
+      | _ => size_const T
+
+    fun mk_measure_trm T = 
+      HOLogic.dest_setT T
+      |> fst o HOLogic.dest_prodT
+      |> mk_size_measure 
+      |> curry (op $) (Const (@{const_name "measure"}, dummyT))
+      |> Syntax.check_term ctxt
+      
+    val ss = HOL_ss addsimps @{thms in_measure wf_measure sum.cases add_Suc_right add.right_neutral 
+      zero_less_Suc prod.size(1) mult_Suc_right} @ size_simps 
+    val ss' = ss addsimprocs Nat_Numeral_Simprocs.cancel_numerals
+  in
+    Function_Relation.relation_tac ctxt mk_measure_trm
+    THEN_ALL_NEW simp_tac ss'
+  end
+
+fun prove_termination size_simps ctxt = 
+  Function.prove_termination NONE 
+    (HEADGOAL (prove_termination_tac size_simps ctxt)) ctxt
+
+(** transformations of premises (in inductive proofs) **)
+
+(* 
+ given the theorem F[t]; proves the theorem F[f t] 
+
+  - F needs to be monotone
+  - f returns either SOME for a term it fires on 
+    and NONE elsewhere 
+*)
+fun map_term f t = 
+  (case f t of
+     NONE => map_term' f t 
+   | x => x)
+and map_term' f (t $ u) = 
+    (case (map_term f t, map_term f u) of
+        (NONE, NONE) => NONE
+      | (SOME t'', NONE) => SOME (t'' $ u)
+      | (NONE, SOME u'') => SOME (t $ u'')
+      | (SOME t'', SOME u'') => SOME (t'' $ u''))
+  | map_term' f (Abs (s, T, t)) = 
+      (case map_term f t of
+        NONE => NONE
+      | SOME t'' => SOME (Abs (s, T, t'')))
+  | map_term' _ _  = NONE;
+
+fun map_thm_tac ctxt tac thm =
+  let
+    val monos = Inductive.get_monos ctxt
+    val simps = HOL_basic_ss addsimps @{thms split_def}
+  in
+    EVERY [cut_facts_tac [thm] 1, etac rev_mp 1, 
+      REPEAT_DETERM (FIRSTGOAL (simp_tac simps THEN' resolve_tac monos)),
+      REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
+  end
+
+fun map_thm ctxt f tac thm =
+  let
+    val opt_goal_trm = map_term f (prop_of thm)
+  in
+    case opt_goal_trm of
+      NONE => thm
+    | SOME goal =>
+        Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm) 
+  end
+
+(*
+ inductive premises can be of the form
+ R ... /\ P ...; split_conj_i picks out
+ the part R or P part
+*)
+fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) = 
+  (case head_of f1 of
+     Const (name, _) => if member (op =) names name then SOME f1 else NONE
+   | _ => NONE)
+| split_conj1 _ _ = NONE;
+
+fun split_conj2 names (Const (@{const_name "conj"}, _) $ f1 $ f2) = 
+  (case head_of f1 of
+     Const (name, _) => if member (op =) names name then SOME f2 else NONE
+   | _ => NONE)
+| split_conj2 _ _ = NONE;
+
+fun transform_prem1 ctxt names thm =
+  map_thm ctxt (split_conj1 names) (etac conjunct1 1) thm
+
+fun transform_prem2 ctxt names thm =
+  map_thm ctxt (split_conj2 names) (etac conjunct2 1) thm
+
+
+(* transformes a theorem into one of the object logic *)
+val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
+
+end (* structure *)
+
+open Nominal_Library;
\ No newline at end of file