--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/nominal_library.ML Sun Nov 14 16:34:47 2010 +0000
@@ -0,0 +1,372 @@
+(* Title: nominal_library.ML
+ Author: Christian Urban
+
+ Basic functions for nominal.
+*)
+
+signature NOMINAL_LIBRARY =
+sig
+ val is_true: term -> bool
+
+ val last2: 'a list -> 'a * 'a
+
+ val dest_listT: typ -> typ
+
+ val size_const: typ -> term
+
+ val sum_case_const: typ -> typ -> typ -> term
+ val mk_sum_case: term -> term -> term
+
+ val mk_minus: term -> term
+ val mk_plus: term -> term -> term
+
+ val perm_ty: typ -> typ
+ val mk_perm_ty: typ -> term -> term -> term
+ val mk_perm: term -> term -> term
+ val dest_perm: term -> term * term
+
+ val mk_sort_of: term -> term
+ val atom_ty: typ -> typ
+ val mk_atom_ty: typ -> term -> term
+ val mk_atom: term -> term
+
+ val supp_ty: typ -> typ
+ val supp_const: typ -> term
+ val mk_supp_ty: typ -> term -> term
+ val mk_supp: term -> term
+
+ val supp_rel_ty: typ -> typ
+ val supp_rel_const: typ -> term
+ val mk_supp_rel_ty: typ -> term -> term -> term
+ val mk_supp_rel: term -> term -> term
+
+ val supports_const: typ -> term
+ val mk_supports_ty: typ -> term -> term -> term
+ val mk_supports: term -> term -> term
+
+ val finite_const: typ -> term
+ val mk_finite_ty: typ -> term -> term
+ val mk_finite: term -> term
+
+
+ val mk_equiv: thm -> thm
+ val safe_mk_equiv: thm -> thm
+
+ val mk_diff: term * term -> term
+ val mk_append: term * term -> term
+ val mk_union: term * term -> term
+ val fold_union: term list -> term
+ val fold_append: term list -> term
+ val mk_conj: term * term -> term
+ val fold_conj: term list -> term
+
+ (* fresh arguments for a term *)
+ val fresh_args: Proof.context -> term -> term list
+
+ (* datatype operations *)
+ type cns_info = (term * typ * typ list * bool list) list
+
+ val all_dtyps: Datatype_Aux.descr -> (string * sort) list -> typ list
+ val nth_dtyp: Datatype_Aux.descr -> (string * sort) list -> int -> typ
+ val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> cns_info list
+ val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> cns_info
+ val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list
+
+ (* tactics for function package *)
+ val pat_completeness_simp: thm list -> Proof.context -> tactic
+ val prove_termination: thm list -> Proof.context -> Function.info * local_theory
+
+ (* transformations of premises in inductions *)
+ val transform_prem1: Proof.context -> string list -> thm -> thm
+ val transform_prem2: Proof.context -> string list -> thm -> thm
+
+ (* transformation into the object logic *)
+ val atomize: thm -> thm
+
+end
+
+
+structure Nominal_Library: NOMINAL_LIBRARY =
+struct
+
+fun is_true @{term "Trueprop True"} = true
+ | is_true _ = false
+
+fun last2 [] = raise Empty
+ | last2 [_] = raise Empty
+ | last2 [x, y] = (x, y)
+ | last2 (_ :: xs) = last2 xs
+
+fun dest_listT (Type (@{type_name list}, [T])) = T
+ | dest_listT T = raise TYPE ("dest_listT: list type expected", [T], [])
+
+fun size_const ty = Const (@{const_name size}, ty --> @{typ nat})
+
+fun sum_case_const ty1 ty2 ty3 =
+ Const (@{const_name sum_case}, [ty1 --> ty3, ty2 --> ty3, Type (@{type_name sum}, [ty1, ty2])] ---> ty3)
+fun mk_sum_case trm1 trm2 =
+ let
+ val ([ty1], ty3) = strip_type (fastype_of trm1)
+ val ty2 = domain_type (fastype_of trm2)
+ in
+ sum_case_const ty1 ty2 ty3 $ trm1 $ trm2
+ end
+
+
+
+fun mk_minus p = @{term "uminus::perm => perm"} $ p
+
+fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q
+
+fun perm_ty ty = @{typ "perm"} --> ty --> ty
+fun mk_perm_ty ty p trm = Const (@{const_name "permute"}, perm_ty ty) $ p $ trm
+fun mk_perm p trm = mk_perm_ty (fastype_of trm) p trm
+
+fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t)
+ | dest_perm t = raise TERM ("dest_perm", [t]);
+
+fun mk_sort_of t = @{term "sort_of"} $ t;
+
+fun atom_ty ty = ty --> @{typ "atom"};
+fun mk_atom_ty ty t = Const (@{const_name "atom"}, atom_ty ty) $ t;
+fun mk_atom t = mk_atom_ty (fastype_of t) t;
+
+
+fun supp_ty ty = ty --> @{typ "atom set"};
+fun supp_const ty = Const (@{const_name supp}, supp_ty ty)
+fun mk_supp_ty ty t = supp_const ty $ t
+fun mk_supp t = mk_supp_ty (fastype_of t) t
+
+fun supp_rel_ty ty = ([ty, ty] ---> @{typ bool}) --> ty --> @{typ "atom set"};
+fun supp_rel_const ty = Const (@{const_name supp_rel}, supp_rel_ty ty)
+fun mk_supp_rel_ty ty r t = supp_rel_const ty $ r $ t
+fun mk_supp_rel r t = mk_supp_rel_ty (fastype_of t) r t
+
+fun supports_const ty = Const (@{const_name supports}, [@{typ "atom set"}, ty] ---> @{typ bool});
+fun mk_supports_ty ty t1 t2 = supports_const ty $ t1 $ t2;
+fun mk_supports t1 t2 = mk_supports_ty (fastype_of t2) t1 t2;
+
+fun finite_const ty = Const (@{const_name finite}, ty --> @{typ bool})
+fun mk_finite_ty ty t = finite_const ty $ t
+fun mk_finite t = mk_finite_ty (fastype_of t) t
+
+
+fun mk_equiv r = r RS @{thm eq_reflection};
+fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r;
+
+
+(* functions that construct differences, appends and unions
+ but avoid producing empty atom sets or empty atom lists *)
+
+fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"}
+ | mk_diff (t1, @{term "{}::atom set"}) = t1
+ | mk_diff (@{term "set ([]::atom list)"}, _) = @{term "set ([]::atom list)"}
+ | mk_diff (t1, @{term "set ([]::atom list)"}) = t1
+ | mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2)
+
+fun mk_append (t1, @{term "[]::atom list"}) = t1
+ | mk_append (@{term "[]::atom list"}, t2) = t2
+ | mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2)
+
+fun mk_union (t1, @{term "{}::atom set"}) = t1
+ | mk_union (@{term "{}::atom set"}, t2) = t2
+ | mk_union (t1, @{term "set ([]::atom list)"}) = t1
+ | mk_union (@{term "set ([]::atom list)"}, t2) = t2
+ | mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2)
+
+fun fold_union trms = fold_rev (curry mk_union) trms @{term "{}::atom set"}
+fun fold_append trms = fold_rev (curry mk_append) trms @{term "[]::atom list"}
+
+fun mk_conj (t1, @{term "True"}) = t1
+ | mk_conj (@{term "True"}, t2) = t2
+ | mk_conj (t1, t2) = HOLogic.mk_conj (t1, t2)
+
+fun fold_conj trms = fold_rev (curry mk_conj) trms @{term "True"}
+
+
+(* produces fresh arguments for a term *)
+
+fun fresh_args ctxt f =
+ f |> fastype_of
+ |> binder_types
+ |> map (pair "z")
+ |> Variable.variant_frees ctxt [f]
+ |> map Free
+
+
+
+(** datatypes **)
+
+(* constructor infos *)
+type cns_info = (term * typ * typ list * bool list) list
+
+(* returns the type of the nth datatype *)
+fun all_dtyps descr sorts =
+ map (fn n => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n)) (0 upto (length descr - 1))
+
+fun nth_dtyp descr sorts n =
+ Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n);
+
+(* returns info about constructors in a datatype *)
+fun all_dtyp_constrs_info descr =
+ map (fn (_, (ty, vs, constrs)) => map (pair (ty, vs)) constrs) descr
+
+(* returns the constants of the constructors plus the
+ corresponding type and types of arguments *)
+fun all_dtyp_constrs_types descr sorts =
+ let
+ fun aux ((ty_name, vs), (cname, args)) =
+ let
+ val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs
+ val ty = Type (ty_name, vs_tys)
+ val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args
+ val is_rec = map Datatype_Aux.is_rec_type args
+ in
+ (Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec)
+ end
+ in
+ map (map aux) (all_dtyp_constrs_info descr)
+ end
+
+fun nth_dtyp_constrs_types descr sorts n =
+ nth (all_dtyp_constrs_types descr sorts) n
+
+
+(* generates for every datatype a name str ^ dt_name
+ plus and index for multiple occurences of a string *)
+fun prefix_dt_names descr sorts str =
+ let
+ fun get_nth_name (i, _) =
+ Datatype_Aux.name_of_typ (nth_dtyp descr sorts i)
+ in
+ Datatype_Prop.indexify_names
+ (map (prefix str o get_nth_name) descr)
+ end
+
+
+
+(** function package tactics **)
+
+fun pat_completeness_simp simps lthy =
+ let
+ val simp_set = HOL_basic_ss addsimps (@{thms sum.inject sum.distinct} @ simps)
+ in
+ Pat_Completeness.pat_completeness_tac lthy 1
+ THEN ALLGOALS (asm_full_simp_tac simp_set)
+ end
+
+
+fun prove_termination_tac size_simps ctxt =
+ let
+ val natT = @{typ nat}
+ fun prod_size_const fT sT =
+ let
+ val fT_fun = fT --> natT
+ val sT_fun = sT --> natT
+ val prodT = Type (@{type_name prod}, [fT, sT])
+ in
+ Const (@{const_name prod_size}, [fT_fun, sT_fun, prodT] ---> natT)
+ end
+
+ fun mk_size_measure T =
+ case T of
+ (Type (@{type_name Sum_Type.sum}, [fT, sT])) =>
+ SumTree.mk_sumcase fT sT natT (mk_size_measure fT) (mk_size_measure sT)
+ | (Type (@{type_name Product_Type.prod}, [fT, sT])) =>
+ prod_size_const fT sT $ (mk_size_measure fT) $ (mk_size_measure sT)
+ | _ => size_const T
+
+ fun mk_measure_trm T =
+ HOLogic.dest_setT T
+ |> fst o HOLogic.dest_prodT
+ |> mk_size_measure
+ |> curry (op $) (Const (@{const_name "measure"}, dummyT))
+ |> Syntax.check_term ctxt
+
+ val ss = HOL_ss addsimps @{thms in_measure wf_measure sum.cases add_Suc_right add.right_neutral
+ zero_less_Suc prod.size(1) mult_Suc_right} @ size_simps
+ val ss' = ss addsimprocs Nat_Numeral_Simprocs.cancel_numerals
+ in
+ Function_Relation.relation_tac ctxt mk_measure_trm
+ THEN_ALL_NEW simp_tac ss'
+ end
+
+fun prove_termination size_simps ctxt =
+ Function.prove_termination NONE
+ (HEADGOAL (prove_termination_tac size_simps ctxt)) ctxt
+
+(** transformations of premises (in inductive proofs) **)
+
+(*
+ given the theorem F[t]; proves the theorem F[f t]
+
+ - F needs to be monotone
+ - f returns either SOME for a term it fires on
+ and NONE elsewhere
+*)
+fun map_term f t =
+ (case f t of
+ NONE => map_term' f t
+ | x => x)
+and map_term' f (t $ u) =
+ (case (map_term f t, map_term f u) of
+ (NONE, NONE) => NONE
+ | (SOME t'', NONE) => SOME (t'' $ u)
+ | (NONE, SOME u'') => SOME (t $ u'')
+ | (SOME t'', SOME u'') => SOME (t'' $ u''))
+ | map_term' f (Abs (s, T, t)) =
+ (case map_term f t of
+ NONE => NONE
+ | SOME t'' => SOME (Abs (s, T, t'')))
+ | map_term' _ _ = NONE;
+
+fun map_thm_tac ctxt tac thm =
+ let
+ val monos = Inductive.get_monos ctxt
+ val simps = HOL_basic_ss addsimps @{thms split_def}
+ in
+ EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
+ REPEAT_DETERM (FIRSTGOAL (simp_tac simps THEN' resolve_tac monos)),
+ REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
+ end
+
+fun map_thm ctxt f tac thm =
+ let
+ val opt_goal_trm = map_term f (prop_of thm)
+ in
+ case opt_goal_trm of
+ NONE => thm
+ | SOME goal =>
+ Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
+ end
+
+(*
+ inductive premises can be of the form
+ R ... /\ P ...; split_conj_i picks out
+ the part R or P part
+*)
+fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) =
+ (case head_of f1 of
+ Const (name, _) => if member (op =) names name then SOME f1 else NONE
+ | _ => NONE)
+| split_conj1 _ _ = NONE;
+
+fun split_conj2 names (Const (@{const_name "conj"}, _) $ f1 $ f2) =
+ (case head_of f1 of
+ Const (name, _) => if member (op =) names name then SOME f2 else NONE
+ | _ => NONE)
+| split_conj2 _ _ = NONE;
+
+fun transform_prem1 ctxt names thm =
+ map_thm ctxt (split_conj1 names) (etac conjunct1 1) thm
+
+fun transform_prem2 ctxt names thm =
+ map_thm ctxt (split_conj2 names) (etac conjunct2 1) thm
+
+
+(* transformes a theorem into one of the object logic *)
+val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
+
+end (* structure *)
+
+open Nominal_Library;
\ No newline at end of file