Nominal/nominal_eqvt.ML
changeset 2568 8193bbaa07fe
parent 2477 2f289c1f6cf1
child 2620 81921f8ad245
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/nominal_eqvt.ML	Sun Nov 14 16:34:47 2010 +0000
@@ -0,0 +1,142 @@
+(*  Title:      nominal_eqvt.ML
+    Author:     Stefan Berghofer (original code)
+    Author:     Christian Urban
+
+    Automatic proofs for equivariance of inductive predicates.
+*)
+
+signature NOMINAL_EQVT =
+sig
+  val eqvt_rel_tac: Proof.context -> string list -> term -> thm -> thm list -> int -> tactic
+  val eqvt_rel_single_case_tac: Proof.context -> string list -> term -> thm -> int -> tactic
+  
+  val equivariance: bool -> term list -> thm -> thm list -> Proof.context -> thm list * local_theory
+  val equivariance_cmd: string -> Proof.context -> local_theory
+end
+
+structure Nominal_Eqvt : NOMINAL_EQVT =
+struct
+
+open Nominal_Permeq;
+open Nominal_ThmDecls;
+
+val atomize_conv = 
+  MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE))
+    (HOL_basic_ss addsimps @{thms induct_atomize});
+val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv);
+fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1
+  (Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt));
+
+
+(** equivariance tactics **)
+
+val perm_boolE = @{thm permute_boolE}
+val perm_cancel = @{thms permute_minus_cancel(2)}
+
+fun eqvt_rel_single_case_tac ctxt pred_names pi intro  = 
+  let
+    val thy = ProofContext.theory_of ctxt
+    val cpi = Thm.cterm_of thy (mk_minus pi)
+    val pi_intro_rule = Drule.instantiate' [] [SOME cpi] perm_boolE
+    val simps1 = HOL_basic_ss addsimps @{thms permute_fun_def minus_minus split_paired_all}
+    val simps2 = HOL_basic_ss addsimps @{thms permute_bool_def}
+  in
+    eqvt_strict_tac ctxt [] pred_names THEN'
+    SUBPROOF (fn {prems, context as ctxt, ...} =>
+      let
+        val prems' = map (transform_prem2 ctxt pred_names) prems
+        val tac1 = resolve_tac prems'
+        val tac2 = EVERY' [ rtac pi_intro_rule, 
+          eqvt_strict_tac ctxt perm_cancel pred_names, resolve_tac prems' ]
+        val tac3 = EVERY' [ rtac pi_intro_rule, 
+          eqvt_strict_tac ctxt perm_cancel pred_names, simp_tac simps1, 
+          simp_tac simps2, resolve_tac prems']
+      in
+        (rtac intro THEN_ALL_NEW FIRST' [tac1, tac2, tac3]) 1 
+      end) ctxt
+  end
+
+fun eqvt_rel_tac ctxt pred_names pi induct intros =
+  let
+    val cases = map (eqvt_rel_single_case_tac ctxt pred_names pi) intros
+  in
+    EVERY' (rtac induct :: cases)
+  end
+
+
+(** equivariance procedure *)
+
+fun prepare_goal pi pred =
+  let
+    val (c, xs) = strip_comb pred;
+  in
+    HOLogic.mk_imp (pred, list_comb (c, map (mk_perm pi) xs))
+  end
+
+(* stores thm under name.eqvt and adds [eqvt]-attribute *)
+
+fun note_named_thm (name, thm) ctxt = 
+  let
+    val thm_name = Binding.qualified_name 
+      (Long_Name.qualify (Long_Name.base_name name) "eqvt")
+    val attr = Attrib.internal (K eqvt_add)
+    val ((_, [thm']), ctxt') =  Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
+  in
+    (thm', ctxt')
+  end
+
+fun equivariance note_flag pred_trms raw_induct intrs ctxt = 
+  let
+    val is_already_eqvt = 
+      filter (is_eqvt ctxt) pred_trms
+      |> map (Syntax.string_of_term ctxt)
+    val _ = if null is_already_eqvt then ()
+      else error ("Already equivariant: " ^ commas is_already_eqvt)
+
+    val pred_names = map (fst o dest_Const) pred_trms
+    val raw_induct' = atomize_induct ctxt raw_induct
+    val intrs' = map atomize_intr intrs
+  
+    val (([raw_concl], [raw_pi]), ctxt') = 
+      ctxt 
+      |> Variable.import_terms false [concl_of raw_induct'] 
+      ||>> Variable.variant_fixes ["p"]
+    val pi = Free (raw_pi, @{typ perm})
+  
+    val preds = map (fst o HOLogic.dest_imp)
+      (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
+  
+    val goal = HOLogic.mk_Trueprop 
+      (foldr1 HOLogic.mk_conj (map (prepare_goal pi) preds))
+  
+    val thms = Goal.prove ctxt' [] [] goal 
+      (fn {context,...} => eqvt_rel_tac context pred_names pi raw_induct' intrs' 1)
+      |> Datatype_Aux.split_conj_thm 
+      |> ProofContext.export ctxt' ctxt
+      |> map (fn th => th RS mp)
+      |> map zero_var_indexes
+  in
+    if note_flag
+    then fold_map note_named_thm (pred_names ~~ thms) ctxt 
+    else (thms, ctxt) 
+  end
+
+fun equivariance_cmd pred_name ctxt =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val (_, {preds, raw_induct, intrs, ...}) =
+      Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+  in
+    equivariance true preds raw_induct intrs ctxt |> snd
+  end
+
+local structure P = Parse and K = Keyword in
+
+val _ =
+  Outer_Syntax.local_theory "equivariance"
+    "Proves equivariance for inductive predicate involving nominal datatypes." 
+      K.thy_decl (P.xname >> equivariance_cmd);
+
+end;
+
+end (* structure *)