--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/nominal_eqvt.ML Sun Nov 14 16:34:47 2010 +0000
@@ -0,0 +1,142 @@
+(* Title: nominal_eqvt.ML
+ Author: Stefan Berghofer (original code)
+ Author: Christian Urban
+
+ Automatic proofs for equivariance of inductive predicates.
+*)
+
+signature NOMINAL_EQVT =
+sig
+ val eqvt_rel_tac: Proof.context -> string list -> term -> thm -> thm list -> int -> tactic
+ val eqvt_rel_single_case_tac: Proof.context -> string list -> term -> thm -> int -> tactic
+
+ val equivariance: bool -> term list -> thm -> thm list -> Proof.context -> thm list * local_theory
+ val equivariance_cmd: string -> Proof.context -> local_theory
+end
+
+structure Nominal_Eqvt : NOMINAL_EQVT =
+struct
+
+open Nominal_Permeq;
+open Nominal_ThmDecls;
+
+val atomize_conv =
+ MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE))
+ (HOL_basic_ss addsimps @{thms induct_atomize});
+val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv);
+fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1
+ (Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt));
+
+
+(** equivariance tactics **)
+
+val perm_boolE = @{thm permute_boolE}
+val perm_cancel = @{thms permute_minus_cancel(2)}
+
+fun eqvt_rel_single_case_tac ctxt pred_names pi intro =
+ let
+ val thy = ProofContext.theory_of ctxt
+ val cpi = Thm.cterm_of thy (mk_minus pi)
+ val pi_intro_rule = Drule.instantiate' [] [SOME cpi] perm_boolE
+ val simps1 = HOL_basic_ss addsimps @{thms permute_fun_def minus_minus split_paired_all}
+ val simps2 = HOL_basic_ss addsimps @{thms permute_bool_def}
+ in
+ eqvt_strict_tac ctxt [] pred_names THEN'
+ SUBPROOF (fn {prems, context as ctxt, ...} =>
+ let
+ val prems' = map (transform_prem2 ctxt pred_names) prems
+ val tac1 = resolve_tac prems'
+ val tac2 = EVERY' [ rtac pi_intro_rule,
+ eqvt_strict_tac ctxt perm_cancel pred_names, resolve_tac prems' ]
+ val tac3 = EVERY' [ rtac pi_intro_rule,
+ eqvt_strict_tac ctxt perm_cancel pred_names, simp_tac simps1,
+ simp_tac simps2, resolve_tac prems']
+ in
+ (rtac intro THEN_ALL_NEW FIRST' [tac1, tac2, tac3]) 1
+ end) ctxt
+ end
+
+fun eqvt_rel_tac ctxt pred_names pi induct intros =
+ let
+ val cases = map (eqvt_rel_single_case_tac ctxt pred_names pi) intros
+ in
+ EVERY' (rtac induct :: cases)
+ end
+
+
+(** equivariance procedure *)
+
+fun prepare_goal pi pred =
+ let
+ val (c, xs) = strip_comb pred;
+ in
+ HOLogic.mk_imp (pred, list_comb (c, map (mk_perm pi) xs))
+ end
+
+(* stores thm under name.eqvt and adds [eqvt]-attribute *)
+
+fun note_named_thm (name, thm) ctxt =
+ let
+ val thm_name = Binding.qualified_name
+ (Long_Name.qualify (Long_Name.base_name name) "eqvt")
+ val attr = Attrib.internal (K eqvt_add)
+ val ((_, [thm']), ctxt') = Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
+ in
+ (thm', ctxt')
+ end
+
+fun equivariance note_flag pred_trms raw_induct intrs ctxt =
+ let
+ val is_already_eqvt =
+ filter (is_eqvt ctxt) pred_trms
+ |> map (Syntax.string_of_term ctxt)
+ val _ = if null is_already_eqvt then ()
+ else error ("Already equivariant: " ^ commas is_already_eqvt)
+
+ val pred_names = map (fst o dest_Const) pred_trms
+ val raw_induct' = atomize_induct ctxt raw_induct
+ val intrs' = map atomize_intr intrs
+
+ val (([raw_concl], [raw_pi]), ctxt') =
+ ctxt
+ |> Variable.import_terms false [concl_of raw_induct']
+ ||>> Variable.variant_fixes ["p"]
+ val pi = Free (raw_pi, @{typ perm})
+
+ val preds = map (fst o HOLogic.dest_imp)
+ (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
+
+ val goal = HOLogic.mk_Trueprop
+ (foldr1 HOLogic.mk_conj (map (prepare_goal pi) preds))
+
+ val thms = Goal.prove ctxt' [] [] goal
+ (fn {context,...} => eqvt_rel_tac context pred_names pi raw_induct' intrs' 1)
+ |> Datatype_Aux.split_conj_thm
+ |> ProofContext.export ctxt' ctxt
+ |> map (fn th => th RS mp)
+ |> map zero_var_indexes
+ in
+ if note_flag
+ then fold_map note_named_thm (pred_names ~~ thms) ctxt
+ else (thms, ctxt)
+ end
+
+fun equivariance_cmd pred_name ctxt =
+ let
+ val thy = ProofContext.theory_of ctxt
+ val (_, {preds, raw_induct, intrs, ...}) =
+ Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+ in
+ equivariance true preds raw_induct intrs ctxt |> snd
+ end
+
+local structure P = Parse and K = Keyword in
+
+val _ =
+ Outer_Syntax.local_theory "equivariance"
+ "Proves equivariance for inductive predicate involving nominal datatypes."
+ K.thy_decl (P.xname >> equivariance_cmd);
+
+end;
+
+end (* structure *)