--- a/Nominal/Nominal2_Base.thy Tue Jan 18 22:11:49 2011 +0900
+++ b/Nominal/Nominal2_Base.thy Tue Jan 18 17:19:50 2011 +0100
@@ -549,6 +549,21 @@
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
unfolding permute_set_eq_image image_insert ..
+lemma Collect_eqvt:
+ shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
+ unfolding Collect_def permute_fun_def ..
+
+lemma inter_eqvt:
+ shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
+ unfolding Int_def
+ apply(simp add: Collect_eqvt)
+ apply(simp add: permute_fun_def)
+ apply(simp add: conj_eqvt)
+ apply(simp add: mem_eqvt)
+ apply(simp add: permute_fun_def)
+ done
+
+
subsection {* Permutations for units *}
@@ -1997,7 +2012,29 @@
by blast
qed
-
+lemma set_renaming_perm2:
+ shows "\<exists>q. (\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)"
+proof -
+ have "finite (bs \<inter> supp p)" by (simp add: finite_supp)
+ then obtain q
+ where *: "\<forall>b \<in> bs \<inter> supp p. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> (bs \<inter> supp p) \<union> (p \<bullet> (bs \<inter> supp p))"
+ using set_renaming_perm by blast
+ from ** have "supp q \<subseteq> bs \<union> (p \<bullet> bs)" by (auto simp add: inter_eqvt)
+ moreover
+ have "\<forall>b \<in> bs - supp p. q \<bullet> b = p \<bullet> b"
+ apply(auto)
+ apply(subgoal_tac "b \<notin> supp q")
+ apply(simp add: fresh_def[symmetric])
+ apply(simp add: fresh_perm)
+ apply(clarify)
+ apply(rotate_tac 2)
+ apply(drule subsetD[OF **])
+ apply(simp add: inter_eqvt supp_eqvt permute_self)
+ done
+ ultimately have "(\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)" using * by auto
+ then show "\<exists>q. (\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)" by blast
+qed
+
lemma list_renaming_perm:
shows "\<exists>q. (\<forall>b \<in> set bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set bs \<union> (p \<bullet> set bs)"
proof (induct bs)