Quot/Nominal/Nominal2_Atoms.thy
changeset 1258 7d8949da7d99
parent 1252 4b0563bc4b03
child 1259 db158e995bfc
--- a/Quot/Nominal/Nominal2_Atoms.thy	Wed Feb 24 17:32:43 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,251 +0,0 @@
-(*  Title:      Nominal2_Atoms
-    Authors:    Brian Huffman, Christian Urban
-
-    Definitions for concrete atom types. 
-*)
-theory Nominal2_Atoms
-imports Nominal2_Base
-uses ("nominal_atoms.ML")
-begin
-
-section {* Concrete atom types *}
-
-text {*
-  Class @{text at_base} allows types containing multiple sorts of atoms.
-  Class @{text at} only allows types with a single sort.
-*}
-
-class at_base = pt +
-  fixes atom :: "'a \<Rightarrow> atom"
-  assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b"
-  assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)"
-
-class at = at_base +
-  assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)"
-
-instance at < at_base ..
-
-lemma supp_at_base: 
-  fixes a::"'a::at_base"
-  shows "supp a = {atom a}"
-  by (simp add: supp_atom [symmetric] supp_def atom_eqvt)
-
-lemma fresh_at_base: 
-  shows "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b"
-  unfolding fresh_def by (simp add: supp_at_base)
-
-instance at_base < fs
-proof qed (simp add: supp_at_base)
-
-lemma at_base_infinite [simp]:
-  shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
-proof
-  obtain a :: 'a where "True" by auto
-  assume "finite ?U"
-  hence "finite (atom ` ?U)"
-    by (rule finite_imageI)
-  then obtain b where b: "b \<notin> atom ` ?U" "sort_of b = sort_of (atom a)"
-    by (rule obtain_atom)
-  from b(2) have "b = atom ((atom a \<rightleftharpoons> b) \<bullet> a)"
-    unfolding atom_eqvt [symmetric]
-    by (simp add: swap_atom)
-  hence "b \<in> atom ` ?U" by simp
-  with b(1) show "False" by simp
-qed
-
-lemma swap_at_base_simps [simp]:
-  fixes x y::"'a::at_base"
-  shows "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> x = y"
-  and   "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> y = x"
-  and   "atom x \<noteq> a \<Longrightarrow> atom x \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x"
-  unfolding atom_eq_iff [symmetric]
-  unfolding atom_eqvt [symmetric]
-  by simp_all
-
-lemma obtain_at_base:
-  assumes X: "finite X"
-  obtains a::"'a::at_base" where "atom a \<notin> X"
-proof -
-  have "inj (atom :: 'a \<Rightarrow> atom)"
-    by (simp add: inj_on_def)
-  with X have "finite (atom -` X :: 'a set)"
-    by (rule finite_vimageI)
-  with at_base_infinite have "atom -` X \<noteq> (UNIV :: 'a set)"
-    by auto
-  then obtain a :: 'a where "atom a \<notin> X"
-    by auto
-  thus ?thesis ..
-qed
-
-
-section {* A swapping operation for concrete atoms *}
-  
-definition
-  flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')")
-where
-  "(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)"
-
-lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0"
-  unfolding flip_def by (rule swap_self)
-
-lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)"
-  unfolding flip_def by (rule swap_commute)
-
-lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)"
-  unfolding flip_def by (rule minus_swap)
-
-lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0"
-  unfolding flip_def by (rule swap_cancel)
-
-lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x"
-  unfolding permute_plus [symmetric] add_flip_cancel by simp
-
-lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x"
-  by (simp add: flip_commute)
-
-lemma flip_eqvt: 
-  fixes a b c::"'a::at_base"
-  shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)"
-  unfolding flip_def
-  by (simp add: swap_eqvt atom_eqvt)
-
-lemma flip_at_base_simps [simp]:
-  shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b"
-  and   "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a"
-  and   "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c"
-  and   "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x"
-  unfolding flip_def
-  unfolding atom_eq_iff [symmetric]
-  unfolding atom_eqvt [symmetric]
-  by simp_all
-
-text {* the following two lemmas do not hold for at_base, 
-  only for single sort atoms from at *}
-
-lemma permute_flip_at:
-  fixes a b c::"'a::at"
-  shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)"
-  unfolding flip_def
-  apply (rule atom_eq_iff [THEN iffD1])
-  apply (subst atom_eqvt [symmetric])
-  apply (simp add: swap_atom)
-  done
-
-lemma flip_at_simps [simp]:
-  fixes a b::"'a::at"
-  shows "(a \<leftrightarrow> b) \<bullet> a = b" 
-  and   "(a \<leftrightarrow> b) \<bullet> b = a"
-  unfolding permute_flip_at by simp_all
-
-
-subsection {* Syntax for coercing at-elements to the atom-type *}
-
-syntax
-  "_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3)
-
-translations
-  "_atom_constrain a t" => "atom (_constrain a t)"
-
-
-subsection {* A lemma for proving instances of class @{text at}. *}
-
-setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *}
-setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *}
-
-text {*
-  New atom types are defined as subtypes of @{typ atom}.
-*}
-
-lemma exists_eq_simple_sort: 
-  shows "\<exists>a. a \<in> {a. sort_of a = s}"
-  by (rule_tac x="Atom s 0" in exI, simp)
-
-lemma exists_eq_sort: 
-  shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}"
-  by (rule_tac x="Atom (sort_fun x) y" in exI, simp)
-
-lemma at_base_class:
-  fixes sort_fun :: "'b \<Rightarrow>atom_sort"
-  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
-  assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}"
-  assumes atom_def: "\<And>a. atom a = Rep a"
-  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
-  shows "OFCLASS('a, at_base_class)"
-proof
-  interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type)
-  have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp
-  fix a b :: 'a and p p1 p2 :: perm
-  show "0 \<bullet> a = a"
-    unfolding permute_def by (simp add: Rep_inverse)
-  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
-    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
-  show "atom a = atom b \<longleftrightarrow> a = b"
-    unfolding atom_def by (simp add: Rep_inject)
-  show "p \<bullet> atom a = atom (p \<bullet> a)"
-    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
-qed
-
-(*
-lemma at_class:
-  fixes s :: atom_sort
-  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
-  assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}"
-  assumes atom_def: "\<And>a. atom a = Rep a"
-  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
-  shows "OFCLASS('a, at_class)"
-proof
-  interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type)
-  have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
-  fix a b :: 'a and p p1 p2 :: perm
-  show "0 \<bullet> a = a"
-    unfolding permute_def by (simp add: Rep_inverse)
-  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
-    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
-  show "sort_of (atom a) = sort_of (atom b)"
-    unfolding atom_def by (simp add: sort_of_Rep)
-  show "atom a = atom b \<longleftrightarrow> a = b"
-    unfolding atom_def by (simp add: Rep_inject)
-  show "p \<bullet> atom a = atom (p \<bullet> a)"
-    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
-qed
-*)
-
-lemma at_class:
-  fixes s :: atom_sort
-  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
-  assumes type: "type_definition Rep Abs {a. sort_of a = s}"
-  assumes atom_def: "\<And>a. atom a = Rep a"
-  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
-  shows "OFCLASS('a, at_class)"
-proof
-  interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
-  have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
-  fix a b :: 'a and p p1 p2 :: perm
-  show "0 \<bullet> a = a"
-    unfolding permute_def by (simp add: Rep_inverse)
-  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
-    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
-  show "sort_of (atom a) = sort_of (atom b)"
-    unfolding atom_def by (simp add: sort_of_Rep)
-  show "atom a = atom b \<longleftrightarrow> a = b"
-    unfolding atom_def by (simp add: Rep_inject)
-  show "p \<bullet> atom a = atom (p \<bullet> a)"
-    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
-qed
-
-setup {* Sign.add_const_constraint
-  (@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *}
-setup {* Sign.add_const_constraint
-  (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}
-
-
-section {* Automation for creating concrete atom types *}
-
-text {* at the moment only single-sort concrete atoms are supported *}
-
-use "nominal_atoms.ML"
-
-
-
-
-end