--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Rsp.thy Thu Feb 25 07:48:33 2010 +0100
@@ -0,0 +1,118 @@
+theory Rsp
+imports Abs
+begin
+
+ML {*
+fun define_quotient_type args tac ctxt =
+let
+ val mthd = Method.SIMPLE_METHOD tac
+ val mthdt = Method.Basic (fn _ => mthd)
+ val bymt = Proof.global_terminal_proof (mthdt, NONE)
+in
+ bymt (Quotient_Type.quotient_type args ctxt)
+end
+*}
+
+ML {*
+fun const_rsp lthy const =
+let
+ val nty = fastype_of (Quotient_Term.quotient_lift_const ("", const) lthy)
+ val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
+in
+ HOLogic.mk_Trueprop (rel $ const $ const)
+end
+*}
+
+(* Replaces bounds by frees and meta implications by implications *)
+ML {*
+fun prepare_goal trm =
+let
+ val vars = strip_all_vars trm
+ val fs = rev (map Free vars)
+ val (fixes, no_alls) = ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
+ val prems = map HOLogic.dest_Trueprop (Logic.strip_imp_prems no_alls)
+ val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl no_alls)
+in
+ (fixes, fold (curry HOLogic.mk_imp) prems concl)
+end
+*}
+
+ML {*
+fun get_rsp_goal thy trm =
+let
+ val goalstate = Goal.init (cterm_of thy trm);
+ val tac = REPEAT o rtac @{thm fun_rel_id};
+in
+ case (SINGLE (tac 1) goalstate) of
+ NONE => error "rsp_goal failed"
+ | SOME th => prepare_goal (term_of (cprem_of th 1))
+end
+*}
+
+ML {*
+fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm
+*}
+
+ML {*
+fun prove_const_rsp bind consts tac ctxt =
+let
+ val rsp_goals = map (const_rsp ctxt) consts
+ val thy = ProofContext.theory_of ctxt
+ val (fixed, user_goals) = split_list (map (get_rsp_goal thy) rsp_goals)
+ val fixed' = distinct (op =) (flat fixed)
+ val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
+ val user_thm = Goal.prove ctxt fixed' [] user_goal tac
+ val user_thms = map repeat_mp (HOLogic.conj_elims user_thm)
+ fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' resolve_tac user_thms THEN_ALL_NEW atac) 1
+ val rsp_thms = map (fn gl => Goal.prove ctxt [] [] gl tac) rsp_goals
+in
+ ctxt
+|> snd o Local_Theory.note
+ ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), rsp_thms)
+|> snd o Local_Theory.note ((bind, []), user_thms)
+end
+*}
+
+
+
+ML {*
+fun fvbv_rsp_tac induct fvbv_simps =
+ ((((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
+ (TRY o rtac @{thm TrueI})) THEN_ALL_NEW asm_full_simp_tac
+ (HOL_ss addsimps (@{thm alpha_gen} :: fvbv_simps)))
+*}
+
+ML {*
+fun constr_rsp_tac inj rsp equivps =
+let
+ val reflps = map (fn x => @{thm equivp_reflp} OF [x]) equivps
+in
+ REPEAT o rtac impI THEN'
+ simp_tac (HOL_ss addsimps inj) THEN'
+ (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)) THEN_ALL_NEW
+ (asm_simp_tac HOL_ss THEN_ALL_NEW (
+ rtac @{thm exI[of _ "0 :: perm"]} THEN'
+ asm_full_simp_tac (HOL_ss addsimps (rsp @ reflps @
+ @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv}))
+ ))
+end
+*}
+
+(* Testing code
+local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} [@{term rbv2}]
+ (fn _ => fv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms fv_rtrm2_fv_rassign.simps} 1) *}*)
+
+(*ML {*
+ val rsp_goals = map (const_rsp @{context}) [@{term rbv2}]
+ val (fixed, user_goals) = split_list (map (get_rsp_goal @{theory}) rsp_goals)
+ val fixed' = distinct (op =) (flat fixed)
+ val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
+*}
+prove ug: {* user_goal *}
+ML_prf {*
+val induct = @{thm alpha_rtrm2_alpha_rassign.inducts(2)}
+val fv_simps = @{thms rbv2.simps}
+*}
+*)
+
+end