Nominal/Perm.thy
changeset 1258 7d8949da7d99
parent 1249 ea6a52a4f5bf
child 1259 db158e995bfc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Perm.thy	Thu Feb 25 07:48:33 2010 +0100
@@ -0,0 +1,147 @@
+theory Perm
+imports "Nominal2_Atoms"
+begin
+
+ML {*
+  open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *)
+  fun permute ty = Const (@{const_name permute}, @{typ perm} --> ty --> ty);
+  val minus_perm = Const (@{const_name minus}, @{typ perm} --> @{typ perm});
+*}
+
+ML {*
+fun prove_perm_empty lthy induct perm_def perm_frees =
+let
+  val perm_types = map fastype_of perm_frees;
+  val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
+  val gl =
+    HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+      (map (fn ((perm, T), x) => HOLogic.mk_eq
+          (perm $ @{term "0 :: perm"} $ Free (x, T),
+           Free (x, T)))
+       (perm_frees ~~
+        map body_type perm_types ~~ perm_indnames)));
+  fun tac _ =
+    EVERY [
+      indtac induct perm_indnames 1,
+      ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_zero} :: perm_def)))
+    ];
+in
+  split_conj_thm (Goal.prove lthy perm_indnames [] gl tac)
+end;
+*}
+
+ML {*
+fun prove_perm_append lthy induct perm_def perm_frees =
+let
+  val add_perm = @{term "op + :: (perm \<Rightarrow> perm \<Rightarrow> perm)"}
+  val pi1 = Free ("pi1", @{typ perm});
+  val pi2 = Free ("pi2", @{typ perm});
+  val perm_types = map fastype_of perm_frees
+  val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
+  val gl =
+    (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+      (map (fn ((perm, T), x) =>
+          let
+            val lhs = perm $ (add_perm $ pi1 $ pi2) $ Free (x, T)
+            val rhs = perm $ pi1 $ (perm $ pi2 $ Free (x, T))
+          in HOLogic.mk_eq (lhs, rhs)
+          end)
+        (perm_frees ~~ map body_type perm_types ~~ perm_indnames))))
+  fun tac _ =
+    EVERY [
+      indtac induct perm_indnames 1,
+      ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_plus} :: perm_def)))
+    ]
+in
+  split_conj_thm (Goal.prove lthy ("pi1" :: "pi2" :: perm_indnames) [] gl tac)
+end;
+*}
+
+ML {*
+(* TODO: full_name can be obtained from new_type_names with Datatype *)
+fun define_raw_perms new_type_names full_tnames thy =
+let
+  val {descr, induct, ...} = Datatype.the_info thy (hd full_tnames);
+  (* TODO: [] should be the sorts that we'll take from the specification *)
+  val sorts = [];
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  val perm_names' = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "permute_" ^ name_of_typ (nth_dtyp i)) descr);
+  val perm_types = map (fn (i, _) =>
+    let val T = nth_dtyp i
+    in @{typ perm} --> T --> T end) descr;
+  val perm_names_types' = perm_names' ~~ perm_types;
+  val pi = Free ("pi", @{typ perm});
+  fun perm_eq_constr i (cname, dts) =
+    let
+      val Ts = map (typ_of_dtyp descr sorts) dts;
+      val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
+      val args = map Free (names ~~ Ts);
+      val c = Const (cname, Ts ---> (nth_dtyp i));
+      fun perm_arg (dt, x) =
+        let val T = type_of x
+        in
+          if is_rec_type dt then
+            let val (Us, _) = strip_type T
+            in list_abs (map (pair "x") Us,
+              Free (nth perm_names_types' (body_index dt)) $ pi $
+                list_comb (x, map (fn (i, U) =>
+                  (permute U) $ (minus_perm $ pi) $ Bound i)
+                  ((length Us - 1 downto 0) ~~ Us)))
+            end
+          else (permute T) $ pi $ x
+        end;
+    in
+      (Attrib.empty_binding, HOLogic.mk_Trueprop (HOLogic.mk_eq
+        (Free (nth perm_names_types' i) $
+           Free ("pi", @{typ perm}) $ list_comb (c, args),
+         list_comb (c, map perm_arg (dts ~~ args)))))
+    end;
+    fun perm_eq (i, (_, _, constrs)) = map (perm_eq_constr i) constrs;
+    val perm_eqs = maps perm_eq descr;
+    val lthy =
+      Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
+    (* TODO: Use the version of prmrec that gives the names explicitely. *)
+    val ((_, perm_ldef), lthy') =
+      Primrec.add_primrec
+        (map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs lthy;
+    val perm_frees =
+      (distinct (op =)) (map (fst o strip_comb o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) perm_ldef);
+    val perm_empty_thms = List.take (prove_perm_empty lthy' induct perm_ldef perm_frees, length new_type_names);
+    val perm_append_thms = List.take (prove_perm_append lthy' induct perm_ldef perm_frees, length new_type_names)
+    val perms_name = space_implode "_" perm_names'
+    val perms_zero_bind = Binding.name (perms_name ^ "_zero")
+    val perms_append_bind = Binding.name (perms_name ^ "_append")
+    fun tac _ perm_thms =
+      (Class.intro_classes_tac []) THEN (ALLGOALS (
+        simp_tac (HOL_ss addsimps perm_thms
+      )));
+    fun morphism phi = map (Morphism.thm phi);
+  in
+  lthy'
+  |> snd o (Local_Theory.note ((perms_zero_bind, []), perm_empty_thms))
+  |> snd o (Local_Theory.note ((perms_append_bind, []), perm_append_thms))
+  |> Class_Target.prove_instantiation_exit_result morphism tac (perm_empty_thms @ perm_append_thms)
+  end
+
+*}
+
+(* Test
+atom_decl name
+
+datatype rtrm1 =
+  rVr1 "name"
+| rAp1 "rtrm1" "rtrm1 list"
+| rLm1 "name" "rtrm1"
+| rLt1 "bp" "rtrm1" "rtrm1"
+and bp =
+  BUnit
+| BVr "name"
+| BPr "bp" "bp"
+
+
+setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Perm.rtrm1", "Perm.bp"] *}
+print_theorems
+*)
+
+end