--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Nominal2_Atoms.thy Thu Feb 25 07:48:33 2010 +0100
@@ -0,0 +1,251 @@
+(* Title: Nominal2_Atoms
+ Authors: Brian Huffman, Christian Urban
+
+ Definitions for concrete atom types.
+*)
+theory Nominal2_Atoms
+imports Nominal2_Base
+uses ("nominal_atoms.ML")
+begin
+
+section {* Concrete atom types *}
+
+text {*
+ Class @{text at_base} allows types containing multiple sorts of atoms.
+ Class @{text at} only allows types with a single sort.
+*}
+
+class at_base = pt +
+ fixes atom :: "'a \<Rightarrow> atom"
+ assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b"
+ assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)"
+
+class at = at_base +
+ assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)"
+
+instance at < at_base ..
+
+lemma supp_at_base:
+ fixes a::"'a::at_base"
+ shows "supp a = {atom a}"
+ by (simp add: supp_atom [symmetric] supp_def atom_eqvt)
+
+lemma fresh_at_base:
+ shows "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b"
+ unfolding fresh_def by (simp add: supp_at_base)
+
+instance at_base < fs
+proof qed (simp add: supp_at_base)
+
+lemma at_base_infinite [simp]:
+ shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
+proof
+ obtain a :: 'a where "True" by auto
+ assume "finite ?U"
+ hence "finite (atom ` ?U)"
+ by (rule finite_imageI)
+ then obtain b where b: "b \<notin> atom ` ?U" "sort_of b = sort_of (atom a)"
+ by (rule obtain_atom)
+ from b(2) have "b = atom ((atom a \<rightleftharpoons> b) \<bullet> a)"
+ unfolding atom_eqvt [symmetric]
+ by (simp add: swap_atom)
+ hence "b \<in> atom ` ?U" by simp
+ with b(1) show "False" by simp
+qed
+
+lemma swap_at_base_simps [simp]:
+ fixes x y::"'a::at_base"
+ shows "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> x = y"
+ and "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> y = x"
+ and "atom x \<noteq> a \<Longrightarrow> atom x \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x"
+ unfolding atom_eq_iff [symmetric]
+ unfolding atom_eqvt [symmetric]
+ by simp_all
+
+lemma obtain_at_base:
+ assumes X: "finite X"
+ obtains a::"'a::at_base" where "atom a \<notin> X"
+proof -
+ have "inj (atom :: 'a \<Rightarrow> atom)"
+ by (simp add: inj_on_def)
+ with X have "finite (atom -` X :: 'a set)"
+ by (rule finite_vimageI)
+ with at_base_infinite have "atom -` X \<noteq> (UNIV :: 'a set)"
+ by auto
+ then obtain a :: 'a where "atom a \<notin> X"
+ by auto
+ thus ?thesis ..
+qed
+
+
+section {* A swapping operation for concrete atoms *}
+
+definition
+ flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')")
+where
+ "(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)"
+
+lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0"
+ unfolding flip_def by (rule swap_self)
+
+lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)"
+ unfolding flip_def by (rule swap_commute)
+
+lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)"
+ unfolding flip_def by (rule minus_swap)
+
+lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0"
+ unfolding flip_def by (rule swap_cancel)
+
+lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x"
+ unfolding permute_plus [symmetric] add_flip_cancel by simp
+
+lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x"
+ by (simp add: flip_commute)
+
+lemma flip_eqvt:
+ fixes a b c::"'a::at_base"
+ shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)"
+ unfolding flip_def
+ by (simp add: swap_eqvt atom_eqvt)
+
+lemma flip_at_base_simps [simp]:
+ shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b"
+ and "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a"
+ and "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c"
+ and "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x"
+ unfolding flip_def
+ unfolding atom_eq_iff [symmetric]
+ unfolding atom_eqvt [symmetric]
+ by simp_all
+
+text {* the following two lemmas do not hold for at_base,
+ only for single sort atoms from at *}
+
+lemma permute_flip_at:
+ fixes a b c::"'a::at"
+ shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)"
+ unfolding flip_def
+ apply (rule atom_eq_iff [THEN iffD1])
+ apply (subst atom_eqvt [symmetric])
+ apply (simp add: swap_atom)
+ done
+
+lemma flip_at_simps [simp]:
+ fixes a b::"'a::at"
+ shows "(a \<leftrightarrow> b) \<bullet> a = b"
+ and "(a \<leftrightarrow> b) \<bullet> b = a"
+ unfolding permute_flip_at by simp_all
+
+
+subsection {* Syntax for coercing at-elements to the atom-type *}
+
+syntax
+ "_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3)
+
+translations
+ "_atom_constrain a t" => "atom (_constrain a t)"
+
+
+subsection {* A lemma for proving instances of class @{text at}. *}
+
+setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *}
+setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *}
+
+text {*
+ New atom types are defined as subtypes of @{typ atom}.
+*}
+
+lemma exists_eq_simple_sort:
+ shows "\<exists>a. a \<in> {a. sort_of a = s}"
+ by (rule_tac x="Atom s 0" in exI, simp)
+
+lemma exists_eq_sort:
+ shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}"
+ by (rule_tac x="Atom (sort_fun x) y" in exI, simp)
+
+lemma at_base_class:
+ fixes sort_fun :: "'b \<Rightarrow>atom_sort"
+ fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
+ assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}"
+ assumes atom_def: "\<And>a. atom a = Rep a"
+ assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
+ shows "OFCLASS('a, at_base_class)"
+proof
+ interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type)
+ have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp
+ fix a b :: 'a and p p1 p2 :: perm
+ show "0 \<bullet> a = a"
+ unfolding permute_def by (simp add: Rep_inverse)
+ show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
+ unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
+ show "atom a = atom b \<longleftrightarrow> a = b"
+ unfolding atom_def by (simp add: Rep_inject)
+ show "p \<bullet> atom a = atom (p \<bullet> a)"
+ unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
+qed
+
+(*
+lemma at_class:
+ fixes s :: atom_sort
+ fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
+ assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}"
+ assumes atom_def: "\<And>a. atom a = Rep a"
+ assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
+ shows "OFCLASS('a, at_class)"
+proof
+ interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type)
+ have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
+ fix a b :: 'a and p p1 p2 :: perm
+ show "0 \<bullet> a = a"
+ unfolding permute_def by (simp add: Rep_inverse)
+ show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
+ unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
+ show "sort_of (atom a) = sort_of (atom b)"
+ unfolding atom_def by (simp add: sort_of_Rep)
+ show "atom a = atom b \<longleftrightarrow> a = b"
+ unfolding atom_def by (simp add: Rep_inject)
+ show "p \<bullet> atom a = atom (p \<bullet> a)"
+ unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
+qed
+*)
+
+lemma at_class:
+ fixes s :: atom_sort
+ fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
+ assumes type: "type_definition Rep Abs {a. sort_of a = s}"
+ assumes atom_def: "\<And>a. atom a = Rep a"
+ assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
+ shows "OFCLASS('a, at_class)"
+proof
+ interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
+ have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
+ fix a b :: 'a and p p1 p2 :: perm
+ show "0 \<bullet> a = a"
+ unfolding permute_def by (simp add: Rep_inverse)
+ show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
+ unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
+ show "sort_of (atom a) = sort_of (atom b)"
+ unfolding atom_def by (simp add: sort_of_Rep)
+ show "atom a = atom b \<longleftrightarrow> a = b"
+ unfolding atom_def by (simp add: Rep_inject)
+ show "p \<bullet> atom a = atom (p \<bullet> a)"
+ unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
+qed
+
+setup {* Sign.add_const_constraint
+ (@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *}
+setup {* Sign.add_const_constraint
+ (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}
+
+
+section {* Automation for creating concrete atom types *}
+
+text {* at the moment only single-sort concrete atoms are supported *}
+
+use "nominal_atoms.ML"
+
+
+
+
+end