--- a/Tutorial/Tutorial5.thy Sat Jan 22 16:37:00 2011 -0600
+++ b/Tutorial/Tutorial5.thy Sat Jan 22 18:59:48 2011 -0600
@@ -1,9 +1,22 @@
+
+
theory Tutorial5
imports Tutorial4
begin
+section {* Type-Preservation and Progress Lemma*}
-section {* Type Preservation (fixme separate file) *}
+text {*
+ The point of this tutorial is to prove the
+ type-preservation and progress lemma. Since
+ we now know that \<Down>, \<longrightarrow>cbv* and the machine
+ correspond to each other, we only need to
+ prove this property for one of them. We chose
+ \<longrightarrow>cbv.
+
+ First we need to establish two elimination
+ properties and two auxiliary lemmas about contexts.
+*}
lemma valid_elim:
@@ -30,6 +43,16 @@
using a1 a2 a3
by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
+
+section {* EXERCISE 16 *}
+
+text {*
+ Next we want to show the type substitution lemma. Unfortunately,
+ we have to prove a slightly more general version of it, where
+ the variable being substituted occurs somewhere inside the
+ context.
+*}
+
lemma type_substitution_aux:
assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
and b: "\<Gamma> \<turnstile> e' : T'"
@@ -40,10 +63,11 @@
have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
have a3: "\<Gamma> \<turnstile> e' : T'" by fact
+
from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
{ assume eq: "x = y"
- from a1 a2 have "T = T'" using eq by (auto intro: context_unique)
- with a3 have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using eq a4 by (auto intro: weakening)
+
+ have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" sorry
}
moreover
{ assume ineq: "x \<noteq> y"
@@ -51,15 +75,46 @@
then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
}
ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
-qed (force simp add: fresh_append fresh_Cons)+
+next
+ case (t_Lam y T1 t T2 x e' \<Delta>)
+ have a1: "atom y \<sharp> e'" by fact
+ have a2: "atom y \<sharp> \<Delta> @ [(x, T')] @ \<Gamma>" by fact
+ have a3: "\<Gamma> \<turnstile> e' : T'" by fact
+ have ih: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> ((y, T1) # \<Delta>) @ \<Gamma> \<turnstile> t [x ::= e'] : T2"
+ using t_Lam(6)[of "(y, T1) # \<Delta>"] by auto
+
+
+ show "\<Delta> @ \<Gamma> \<turnstile> (Lam [y]. t)[x ::= e'] : T1 \<rightarrow> T2" sorry
+next
+ case (t_App t1 T1 T2 t2 x e' \<Delta>)
+ have ih1: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t1 [x ::= e'] : T1 \<rightarrow> T2" using t_App(2) by auto
+ have ih2: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t2 [x ::= e'] : T1" using t_App(4) by auto
+ have a: "\<Gamma> \<turnstile> e' : T'" by fact
+
+ show "\<Delta> @ \<Gamma> \<turnstile> App t1 t2 [x ::= e'] : T2" sorry
+qed
+
+text {*
+ From this we can derive the usual version of the substitution
+ lemma.
+*}
corollary type_substitution:
assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
and b: "\<Gamma> \<turnstile> e' : T'"
shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
-using a b type_substitution_aux[where \<Delta>="[]"]
+using a b type_substitution_aux[of "[]"]
by auto
+
+section {* Type Preservation *}
+
+text {*
+ Finally we are in a position to establish the type preservation
+ property. We just need the following two inversion rules for
+ particualr typing instances.
+*}
+
lemma t_App_elim:
assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
@@ -81,13 +136,34 @@
apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)
done
+
+section {* EXERCISE 17 *}
+
+text {*
+ Fill in the gaps in the t_Lam case. You will need
+ the type substitution lemma proved above.
+*}
+
theorem cbv_type_preservation:
assumes a: "t \<longrightarrow>cbv t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
using a b
-by (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
- (auto elim!: t_Lam_elim t_App_elim simp add: type_substitution ty.eq_iff)
+proof (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
+ case (cbv1 v x t \<Gamma> T)
+ have fc: "atom x \<sharp> \<Gamma>" by fact
+ have "\<Gamma> \<turnstile> App (Lam [x]. t) v : T" by fact
+ then obtain T' where
+ *: "\<Gamma> \<turnstile> Lam [x]. t : T' \<rightarrow> T" and
+ **: "\<Gamma> \<turnstile> v : T'" by (rule t_App_elim)
+ have "(x, T') # \<Gamma> \<turnstile> t : T" using * fc by (rule t_Lam_elim) (simp add: ty.eq_iff)
+
+ show "\<Gamma> \<turnstile> t [x ::= v] : T " sorry
+qed (auto elim!: t_App_elim)
+
+text {*
+ We can easily extend this to sequences of cbv* reductions.
+*}
corollary cbvs_type_preservation:
assumes a: "t \<longrightarrow>cbv* t'"