--- a/Nominal/nominal_dt_alpha.ML Fri Nov 12 01:20:53 2010 +0000
+++ b/Nominal/nominal_dt_alpha.ML Sat Nov 13 10:25:03 2010 +0000
@@ -28,13 +28,16 @@
val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
val raw_prove_equivp: term list -> term list -> thm list -> thm list -> thm list ->
Proof.context -> thm list * thm list
+
val raw_prove_bn_imp: term list -> term list -> thm list -> thm -> Proof.context -> thm list
val raw_fv_bn_rsp_aux: term list -> term list -> term list -> term list ->
term list -> thm -> thm list -> Proof.context -> thm list
val raw_size_rsp_aux: term list -> thm -> thm list -> Proof.context -> thm list
val raw_constrs_rsp: term list -> term list -> thm list -> thm list -> Proof.context -> thm list
val raw_alpha_bn_rsp: term list -> thm list -> thm list -> thm list
-
+ val raw_perm_bn_rsp: term list -> term list -> thm -> thm list -> thm list ->
+ Proof.context -> thm list
+
val mk_funs_rsp: thm -> thm
val mk_alpha_permute_rsp: thm -> thm
end
@@ -582,7 +585,6 @@
let
val alpha_names = map (fst o dest_Const) alpha_trms
val props = map prep_trans_goal alpha_trms
- val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}
in
alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
(prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
@@ -752,6 +754,58 @@
end
+(* rsp for permute_bn functions *)
+
+val perm_bn_rsp = @{lemma "(!x y p. R x y --> R (f p x) (f p y)) ==> (op= ===> R ===> R) f f"
+ by (simp add: fun_rel_def)}
+
+fun raw_prove_perm_bn_tac pred_names alpha_intros simps ctxt =
+ SUBPROOF (fn {prems, context, ...} =>
+ let
+ val prems' = flat (map Datatype_Aux.split_conj_thm prems)
+ val prems'' = map (transform_prem1 context pred_names) prems'
+ in
+ HEADGOAL
+ (simp_tac (HOL_basic_ss addsimps (simps @ prems'))
+ THEN' TRY o REPEAT_ALL_NEW
+ (FIRST' [ rtac @{thm TrueI},
+ rtac @{thm conjI},
+ rtac @{thm refl},
+ resolve_tac prems',
+ resolve_tac prems'',
+ resolve_tac alpha_intros ]))
+ end) ctxt
+
+fun raw_perm_bn_rsp alpha_trms perm_bns alpha_induct alpha_intros simps ctxt =
+ let
+ val arg_ty = domain_type o fastype_of
+ val perm_bn_ty = range_type o range_type o fastype_of
+ val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
+
+ val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
+ val p = Free (p, @{typ perm})
+
+ fun mk_prop t =
+ let
+ val alpha_trm = lookup ty_assoc (perm_bn_ty t)
+ in
+ (alpha_trm, fn (x, y) => alpha_trm $ (t $ p $ x) $ (t $ p $ y))
+ end
+
+ val goals = map mk_prop perm_bns
+ val alpha_names = map (fst o dest_Const) alpha_trms
+
+ in
+ alpha_prove alpha_trms goals alpha_induct
+ (raw_prove_perm_bn_tac alpha_names alpha_intros simps) ctxt
+ |> ProofContext.export ctxt' ctxt
+ |> map atomize
+ |> map single
+ |> map (curry (op OF) perm_bn_rsp)
+ end
+
+
+
(* transformation of the natural rsp-lemmas into standard form *)
val fun_rsp = @{lemma