--- a/Nominal-General/Nominal2_Eqvt.thy Fri Apr 09 09:02:54 2010 -0700
+++ b/Nominal-General/Nominal2_Eqvt.thy Fri Apr 09 21:51:01 2010 +0200
@@ -223,6 +223,13 @@
shows "a \<sharp> ()"
by (simp add: fresh_def supp_unit)
+lemma permute_eqvt_raw:
+ shows "p \<bullet> permute = permute"
+apply(simp add: expand_fun_eq permute_fun_def)
+apply(subst permute_eqvt)
+apply(simp)
+done
+
section {* Equivariance automation *}
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *}
@@ -237,9 +244,7 @@
imp_eqvt [folded induct_implies_def]
(* nominal *)
- (*permute_eqvt commented out since it loops *)
supp_eqvt fresh_eqvt
- permute_pure
(* datatypes *)
permute_prod.simps append_eqvt rev_eqvt set_eqvt
@@ -251,6 +256,9 @@
atom_eqvt add_perm_eqvt
+lemmas [eqvt_raw] =
+ permute_eqvt_raw[THEN eq_reflection] (* the normal version of this lemma loops *)
+
thm eqvts
thm eqvts_raw
@@ -274,31 +282,93 @@
shows "p \<bullet> unpermute p x \<equiv> x"
unfolding unpermute_def by simp
+ML {* @{const Trueprop} *}
+
use "nominal_permeq.ML"
-
+setup Nominal_Permeq.setup
-lemma "p \<bullet> (A \<longrightarrow> B = C)"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+method_setup perm_simp =
+ {* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Nominal_Permeq.eqvt_tac ctxt thms))) *}
+ {* pushes permutations inside *}
+
+declare [[trace_eqvt = true]]
+
+lemma
+ fixes B::"'a::pt"
+ shows "p \<bullet> (B = C)"
+apply(perm_simp)
oops
-lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+lemma
+ fixes B::"bool"
+ shows "p \<bullet> (B = C)"
+apply(perm_simp)
+oops
+
+lemma
+ fixes B::"bool"
+ shows "p \<bullet> (A \<longrightarrow> B = C)"
+apply (perm_simp)
+oops
+
+lemma
+ shows "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo"
+apply(perm_simp)
+oops
+
+lemma
+ shows "p \<bullet> (\<lambda>B::bool. A \<longrightarrow> (B = C)) = foo"
+apply (perm_simp)
+oops
+
+lemma
+ shows "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
+apply (perm_simp)
oops
-lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+lemma
+ shows "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
+apply (perm_simp)
+oops
+
+lemma
+ fixes p q::"perm"
+ and x::"'a::pt"
+ shows "p \<bullet> (q \<bullet> x) = foo"
+apply(perm_simp)
+oops
+
+lemma
+ fixes p q r::"perm"
+ and x::"'a::pt"
+ shows "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
+apply(perm_simp)
oops
-lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+lemma
+ fixes p r::"perm"
+ shows "p \<bullet> (\<lambda>q::perm. q \<bullet> (r \<bullet> x)) = foo"
+apply (perm_simp)
oops
-lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+lemma
+ fixes p q r::"perm"
+ and x::"'a::pt"
+ shows "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
+apply(perm_simp)
oops
-lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+lemma
+ fixes C D::"bool"
+ shows "B (p \<bullet> (C = D))"
+apply(perm_simp)
+oops
+
+declare [[trace_eqvt = false]]
+
+text {* Problem: there is no raw eqvt-rule for The *}
+lemma "p \<bullet> (THE x. P x) = foo"
+apply(perm_simp)
oops