--- a/Nominal/TySch.thy Thu Mar 18 14:48:27 2010 +0100
+++ b/Nominal/TySch.thy Thu Mar 18 15:13:20 2010 +0100
@@ -16,16 +16,16 @@
and tyS =
All xs::"name set" ty::"t" bind xs in ty
-thm t_tyS_fv
-thm t_tyS_eq_iff
-thm t_tyS_bn
-thm t_tyS_perm
-thm t_tyS_induct
-thm t_tyS_distinct
+thm t_tyS.fv
+thm t_tyS.eq_iff
+thm t_tyS.bn
+thm t_tyS.perm
+thm t_tyS.induct
+thm t_tyS.distinct
lemma
shows "All {a, b} (Fun (Var a) (Var b)) = All {b, a} (Fun (Var a) (Var b))"
- apply(simp add: t_tyS_eq_iff)
+ apply(simp add: t_tyS.eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alpha_gen)
apply(auto)
@@ -34,7 +34,7 @@
lemma
shows "All {a, b} (Fun (Var a) (Var b)) = All {a, b} (Fun (Var b) (Var a))"
- apply(simp add: t_tyS_eq_iff)
+ apply(simp add: t_tyS.eq_iff)
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
apply(simp add: alpha_gen fresh_star_def eqvts)
apply auto
@@ -42,18 +42,18 @@
lemma
shows "All {a, b, c} (Fun (Var a) (Var b)) = All {a, b} (Fun (Var a) (Var b))"
- apply(simp add: t_tyS_eq_iff)
+ apply(simp add: t_tyS.eq_iff)
apply(rule_tac x="0::perm" in exI)
- apply(simp add: alpha_gen fresh_star_def eqvts t_tyS_eq_iff)
+ apply(simp add: alpha_gen fresh_star_def eqvts t_tyS.eq_iff)
oops
lemma
assumes a: "a \<noteq> b"
shows "\<not>(All {a, b} (Fun (Var a) (Var b)) = All {c} (Fun (Var c) (Var c)))"
using a
- apply(simp add: t_tyS_eq_iff)
+ apply(simp add: t_tyS.eq_iff)
apply(clarify)
- apply(simp add: alpha_gen fresh_star_def eqvts t_tyS_eq_iff)
+ apply(simp add: alpha_gen fresh_star_def eqvts t_tyS.eq_iff)
apply auto
done