--- a/Nominal/Test.thy Thu Mar 18 14:48:27 2010 +0100
+++ b/Nominal/Test.thy Thu Mar 18 15:13:20 2010 +0100
@@ -22,22 +22,22 @@
lemma finite_fv:
shows "finite (fv_lm t)"
-apply(induct t rule: lm_induct)
+apply(induct t rule: lm.induct)
apply(simp_all)
done
lemma supp_fn:
shows "supp t = fv_lm t"
-apply(induct t rule: lm_induct)
+apply(induct t rule: lm.induct)
apply(simp_all)
apply(simp only: supp_def)
-apply(simp only: lm_perm)
-apply(simp only: lm_eq_iff)
+apply(simp only: lm.perm)
+apply(simp only: lm.eq_iff)
apply(simp only: supp_def[symmetric])
apply(simp only: supp_at_base)
apply(simp (no_asm) only: supp_def)
-apply(simp only: lm_perm)
-apply(simp only: lm_eq_iff)
+apply(simp only: lm.perm)
+apply(simp only: lm.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -45,9 +45,9 @@
apply(simp only: supp_def[symmetric])
apply(rule_tac t="supp (Lm name lm)" and s="supp (Abs {atom name} lm)" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: lm_perm)
+apply(simp only: lm.perm)
apply(simp only: permute_ABS)
-apply(simp only: lm_eq_iff)
+apply(simp only: lm.eq_iff)
apply(simp only: Abs_eq_iff)
apply(simp only: insert_eqvt atom_eqvt empty_eqvt)
apply(simp only: alpha_gen)
@@ -56,7 +56,7 @@
apply(simp only: supp_Abs)
done
-lemmas supp_fn' = lm_fv[simplified supp_fn[symmetric]]
+lemmas supp_fn' = lm.fv[simplified supp_fn[symmetric]]
lemma
fixes c::"'a::fs"
@@ -66,10 +66,10 @@
shows "P c lm"
proof -
have "\<And>p. P c (p \<bullet> lm)"
- apply(induct lm arbitrary: c rule: lm_induct)
- apply(simp only: lm_perm)
+ apply(induct lm arbitrary: c rule: lm.induct)
+ apply(simp only: lm.perm)
apply(rule a1)
- apply(simp only: lm_perm)
+ apply(simp only: lm.perm)
apply(rule a2)
apply(blast)[1]
apply(assumption)
@@ -77,9 +77,9 @@
apply(erule exE)
apply(rule_tac t="p \<bullet> Lm name lm" and
s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lm name lm" in subst)
- apply(simp del: lm_perm)
- apply(subst lm_perm)
- apply(subst (2) lm_perm)
+ apply(simp del: lm.perm)
+ apply(subst lm.perm)
+ apply(subst (2) lm.perm)
apply(rule flip_fresh_fresh)
apply(simp add: fresh_def)
apply(simp only: supp_fn')
@@ -111,13 +111,13 @@
where
"bi (BP x t) = {atom x}"
-thm lam_bp_fv
-thm lam_bp_eq_iff
-thm lam_bp_bn
-thm lam_bp_perm
-thm lam_bp_induct
-thm lam_bp_inducts
-thm lam_bp_distinct
+thm lam_bp.fv
+thm lam_bp.eq_iff
+thm lam_bp.bn
+thm lam_bp.perm
+thm lam_bp.induct
+thm lam_bp.inducts
+thm lam_bp.distinct
ML {* Sign.of_sort @{theory} (@{typ lam}, @{sort fs}) *}
term "supp (x :: lam)"
@@ -129,18 +129,18 @@
lemma supp_fv:
shows "supp t = fv_lam t"
and "supp bp = fv_bp bp \<and> fv_bi bp = {a. infinite {b. \<not>alpha_bi ((a \<rightleftharpoons> b) \<bullet> bp) bp}}"
-apply(induct t and bp rule: lam_bp_inducts)
+apply(induct t and bp rule: lam_bp.inducts)
apply(simp_all)
(* VAR case *)
apply(simp only: supp_def)
-apply(simp only: lam_bp_perm)
-apply(simp only: lam_bp_eq_iff)
+apply(simp only: lam_bp.perm)
+apply(simp only: lam_bp.eq_iff)
apply(simp only: supp_def[symmetric])
apply(simp only: supp_at_base)
(* APP case *)
apply(simp only: supp_def)
-apply(simp only: lam_bp_perm)
-apply(simp only: lam_bp_eq_iff)
+apply(simp only: lam_bp.perm)
+apply(simp only: lam_bp.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -148,9 +148,9 @@
(* LAM case *)
apply(rule_tac t="supp (LAM name lam)" and s="supp (Abs {atom name} lam)" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: lam_bp_perm)
+apply(simp only: lam_bp.perm)
apply(simp only: permute_ABS)
-apply(simp only: lam_bp_eq_iff)
+apply(simp only: lam_bp.eq_iff)
apply(simp only: Abs_eq_iff)
apply(simp only: insert_eqvt atom_eqvt empty_eqvt)
apply(simp only: alpha_gen)
@@ -160,9 +160,9 @@
(* LET case *)
apply(rule_tac t="supp (LET bp lam)" and s="supp (Abs (bi bp) lam) \<union> fv_bi bp" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: lam_bp_perm)
+apply(simp only: lam_bp.perm)
apply(simp only: permute_ABS)
-apply(simp only: lam_bp_eq_iff)
+apply(simp only: lam_bp.eq_iff)
apply(simp only: eqvts)
apply(simp only: Abs_eq_iff)
apply(simp only: ex_simps)
@@ -178,8 +178,8 @@
apply(blast)
(* BP case *)
apply(simp only: supp_def)
-apply(simp only: lam_bp_perm)
-apply(simp only: lam_bp_eq_iff)
+apply(simp only: lam_bp.perm)
+apply(simp only: lam_bp.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -189,7 +189,7 @@
apply(simp)
done
-thm lam_bp_fv[simplified supp_fv(1)[symmetric] supp_fv(2)[THEN conjunct1, symmetric]]
+thm lam_bp.fv[simplified supp_fv(1)[symmetric] supp_fv(2)[THEN conjunct1, symmetric]]
ML {* val _ = recursive := true *}
@@ -205,30 +205,30 @@
where
"bi' (BP' x t) = {atom x}"
-thm lam'_bp'_fv
-thm lam'_bp'_eq_iff[no_vars]
-thm lam'_bp'_bn
-thm lam'_bp'_perm
-thm lam'_bp'_induct
-thm lam'_bp'_inducts
-thm lam'_bp'_distinct
+thm lam'_bp'.fv
+thm lam'_bp'.eq_iff[no_vars]
+thm lam'_bp'.bn
+thm lam'_bp'.perm
+thm lam'_bp'.induct
+thm lam'_bp'.inducts
+thm lam'_bp'.distinct
ML {* Sign.of_sort @{theory} (@{typ lam'}, @{sort fs}) *}
lemma supp_fv':
shows "supp t = fv_lam' t"
and "supp bp = fv_bp' bp"
-apply(induct t and bp rule: lam'_bp'_inducts)
+apply(induct t and bp rule: lam'_bp'.inducts)
apply(simp_all)
(* VAR case *)
apply(simp only: supp_def)
-apply(simp only: lam'_bp'_perm)
-apply(simp only: lam'_bp'_eq_iff)
+apply(simp only: lam'_bp'.perm)
+apply(simp only: lam'_bp'.eq_iff)
apply(simp only: supp_def[symmetric])
apply(simp only: supp_at_base)
(* APP case *)
apply(simp only: supp_def)
-apply(simp only: lam'_bp'_perm)
-apply(simp only: lam'_bp'_eq_iff)
+apply(simp only: lam'_bp'.perm)
+apply(simp only: lam'_bp'.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -236,9 +236,9 @@
(* LAM case *)
apply(rule_tac t="supp (LAM' name lam')" and s="supp (Abs {atom name} lam')" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: lam'_bp'_perm)
+apply(simp only: lam'_bp'.perm)
apply(simp only: permute_ABS)
-apply(simp only: lam'_bp'_eq_iff)
+apply(simp only: lam'_bp'.eq_iff)
apply(simp only: Abs_eq_iff)
apply(simp only: insert_eqvt atom_eqvt empty_eqvt)
apply(simp only: alpha_gen)
@@ -249,9 +249,9 @@
apply(rule_tac t="supp (LET' bp' lam')" and
s="supp (Abs (bi' bp') (bp', lam'))" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: lam'_bp'_perm)
+apply(simp only: lam'_bp'.perm)
apply(simp only: permute_ABS)
-apply(simp only: lam'_bp'_eq_iff)
+apply(simp only: lam'_bp'.eq_iff)
apply(simp only: Abs_eq_iff)
apply(simp only: alpha_gen)
apply(simp only: eqvts split_def fst_conv snd_conv)
@@ -260,8 +260,8 @@
apply(simp add: supp_Abs supp_Pair)
apply blast
apply(simp only: supp_def)
-apply(simp only: lam'_bp'_perm)
-apply(simp only: lam'_bp'_eq_iff)
+apply(simp only: lam'_bp'.perm)
+apply(simp only: lam'_bp'.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -271,7 +271,7 @@
apply simp
done
-thm lam'_bp'_fv[simplified supp_fv'[symmetric]]
+thm lam'_bp'.fv[simplified supp_fv'[symmetric]]
text {* example 2 *}
@@ -293,28 +293,28 @@
| "f (PD x y) = {atom x, atom y}"
| "f (PS x) = {atom x}"
-thm trm'_pat'_fv
-thm trm'_pat'_eq_iff
-thm trm'_pat'_bn
-thm trm'_pat'_perm
-thm trm'_pat'_induct
-thm trm'_pat'_distinct
+thm trm'_pat'.fv
+thm trm'_pat'.eq_iff
+thm trm'_pat'.bn
+thm trm'_pat'.perm
+thm trm'_pat'.induct
+thm trm'_pat'.distinct
lemma supp_fv_trm'_pat':
shows "supp t = fv_trm' t"
and "supp bp = fv_pat' bp \<and> {a. infinite {b. \<not>alpha_f ((a \<rightleftharpoons> b) \<bullet> bp) bp}} = fv_f bp"
-apply(induct t and bp rule: trm'_pat'_inducts)
+apply(induct t and bp rule: trm'_pat'.inducts)
apply(simp_all)
(* VAR case *)
apply(simp only: supp_def)
-apply(simp only: trm'_pat'_perm)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.perm)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp only: supp_def[symmetric])
apply(simp only: supp_at_base)
(* APP case *)
apply(simp only: supp_def)
-apply(simp only: trm'_pat'_perm)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.perm)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -322,9 +322,9 @@
(* LAM case *)
apply(rule_tac t="supp (Lam name trm')" and s="supp (Abs {atom name} trm')" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: trm'_pat'_perm)
+apply(simp only: trm'_pat'.perm)
apply(simp only: permute_ABS)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp only: Abs_eq_iff)
apply(simp only: insert_eqvt atom_eqvt empty_eqvt)
apply(simp only: alpha_gen)
@@ -335,9 +335,9 @@
apply(rule_tac t="supp (Let pat' trm'1 trm'2)"
and s="supp (Abs (f pat') trm'2) \<union> supp trm'1 \<union> fv_f pat'" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: trm'_pat'_perm)
+apply(simp only: trm'_pat'.perm)
apply(simp only: permute_ABS)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp only: eqvts)
apply(simp only: Abs_eq_iff)
apply(simp only: ex_simps)
@@ -353,20 +353,20 @@
apply(blast)
(* PN case *)
apply(simp only: supp_def)
-apply(simp only: trm'_pat'_perm)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.perm)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp)
(* PS case *)
apply(simp only: supp_def)
-apply(simp only: trm'_pat'_perm)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.perm)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp only: supp_def[symmetric])
apply(simp only: supp_at_base)
apply(simp)
(* PD case *)
apply(simp only: supp_def)
-apply(simp only: trm'_pat'_perm)
-apply(simp only: trm'_pat'_eq_iff)
+apply(simp only: trm'_pat'.perm)
+apply(simp only: trm'_pat'.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -375,7 +375,7 @@
apply(simp add: supp_at_base)
done
-thm trm'_pat'_fv[simplified supp_fv_trm'_pat'(1)[symmetric] supp_fv_trm'_pat'(2)[THEN conjunct1, symmetric]]
+thm trm'_pat'.fv[simplified supp_fv_trm'_pat'(1)[symmetric] supp_fv_trm'_pat'(2)[THEN conjunct1, symmetric]]
nominal_datatype trm0 =
Var0 "name"
@@ -393,12 +393,12 @@
| "f0 (PS0 x) = {atom x}"
| "f0 (PD0 p1 p2) = (f0 p1) \<union> (f0 p2)"
-thm trm0_pat0_fv
-thm trm0_pat0_eq_iff
-thm trm0_pat0_bn
-thm trm0_pat0_perm
-thm trm0_pat0_induct
-thm trm0_pat0_distinct
+thm trm0_pat0.fv
+thm trm0_pat0.eq_iff
+thm trm0_pat0.bn
+thm trm0_pat0.perm
+thm trm0_pat0.induct
+thm trm0_pat0.distinct
text {* example type schemes *}
@@ -408,12 +408,12 @@
and tyS =
All xs::"name set" ty::"t" bind xs in ty
-thm t_tyS_fv
-thm t_tyS_eq_iff
-thm t_tyS_bn
-thm t_tyS_perm
-thm t_tyS_induct
-thm t_tyS_distinct
+thm t_tyS.fv
+thm t_tyS.eq_iff
+thm t_tyS.bn
+thm t_tyS.perm
+thm t_tyS.induct
+thm t_tyS.distinct
ML {* Sign.of_sort @{theory} (@{typ t}, @{sort fs}) *}
ML {* Sign.of_sort @{theory} (@{typ tyS}, @{sort fs}) *}
@@ -431,25 +431,25 @@
and S::"tyS"
shows "finite (fv_t T)"
and "finite (fv_tyS S)"
-apply(induct T and S rule: t_tyS_inducts)
-apply(simp_all add: t_tyS_fv)
+apply(induct T and S rule: t_tyS.inducts)
+apply(simp_all add: t_tyS.fv)
done
lemma supp_fv_t_tyS:
shows "supp T = fv_t T"
and "supp S = fv_tyS S"
-apply(induct T and S rule: t_tyS_inducts)
+apply(induct T and S rule: t_tyS.inducts)
apply(simp_all)
(* VarTS case *)
apply(simp only: supp_def)
-apply(simp only: t_tyS_perm)
-apply(simp only: t_tyS_eq_iff)
+apply(simp only: t_tyS.perm)
+apply(simp only: t_tyS.eq_iff)
apply(simp only: supp_def[symmetric])
apply(simp only: supp_at_base)
(* FunTS case *)
apply(simp only: supp_def)
-apply(simp only: t_tyS_perm)
-apply(simp only: t_tyS_eq_iff)
+apply(simp only: t_tyS.perm)
+apply(simp only: t_tyS.eq_iff)
apply(simp only: de_Morgan_conj)
apply(simp only: Collect_disj_eq)
apply(simp only: infinite_Un)
@@ -457,9 +457,9 @@
(* All case *)
apply(rule_tac t="supp (All fun t)" and s="supp (Abs (atom ` fun) t)" in subst)
apply(simp (no_asm) only: supp_def)
-apply(simp only: t_tyS_perm)
+apply(simp only: t_tyS.perm)
apply(simp only: permute_ABS)
-apply(simp only: t_tyS_eq_iff)
+apply(simp only: t_tyS.eq_iff)
apply(simp only: Abs_eq_iff)
apply(simp only: insert_eqvt atom_eqvt empty_eqvt image_eqvt atom_eqvt_raw)
apply(simp only: alpha_gen)
@@ -489,12 +489,12 @@
| "bv1 (BP1 bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
| "bv1 (BV1 x) = {atom x}"
-thm trm1_bp1_fv
-thm trm1_bp1_eq_iff
-thm trm1_bp1_bn
-thm trm1_bp1_perm
-thm trm1_bp1_induct
-thm trm1_bp1_distinct
+thm trm1_bp1.fv
+thm trm1_bp1.eq_iff
+thm trm1_bp1.bn
+thm trm1_bp1.perm
+thm trm1_bp1.induct
+thm trm1_bp1.distinct
text {* example 3 from Terms.thy *}
@@ -512,12 +512,12 @@
"bv3 ANil = {}"
| "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"
-thm trm3_rassigns3_fv
-thm trm3_rassigns3_eq_iff
-thm trm3_rassigns3_bn
-thm trm3_rassigns3_perm
-thm trm3_rassigns3_induct
-thm trm3_rassigns3_distinct
+thm trm3_rassigns3.fv
+thm trm3_rassigns3.eq_iff
+thm trm3_rassigns3.bn
+thm trm3_rassigns3.perm
+thm trm3_rassigns3.induct
+thm trm3_rassigns3.distinct
(* example 5 from Terms.thy *)
@@ -534,12 +534,12 @@
"bv5 Lnil = {}"
| "bv5 (Lcons n t ltl) = {atom n} \<union> (bv5 ltl)"
-thm trm5_lts_fv
-thm trm5_lts_eq_iff
-thm trm5_lts_bn
-thm trm5_lts_perm
-thm trm5_lts_induct
-thm trm5_lts_distinct
+thm trm5_lts.fv
+thm trm5_lts.eq_iff
+thm trm5_lts.bn
+thm trm5_lts.perm
+thm trm5_lts.induct
+thm trm5_lts.distinct
(* example from my PHD *)
@@ -554,12 +554,12 @@
| ImpL c::"coname" t1::"phd" n::"name" t2::"phd" "name" bind c in t1, bind n in t2
| ImpR c::"coname" n::"name" t::"phd" "coname" bind n in t, bind c in t
-thm phd_fv
-thm phd_eq_iff
-thm phd_bn
-thm phd_perm
-thm phd_induct
-thm phd_distinct
+thm phd.fv
+thm phd.eq_iff
+thm phd.bn
+thm phd.perm
+thm phd.induct
+thm phd.distinct
(* example form Leroy 96 about modules; OTT *)
@@ -614,13 +614,13 @@
| "Cbinders (SStru x S) = {atom x}"
| "Cbinders (SVal v T) = {atom v}"
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_fv
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_eq_iff
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_bn
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_perm
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_induct
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_inducts
-thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm_distinct
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.fv
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.eq_iff
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.bn
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.perm
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.induct
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.inducts
+thm mexp_body_defn_sexp_sbody_spec_tyty_path_trmtrm.distinct
(* example 3 from Peter Sewell's bestiary *)
@@ -640,12 +640,12 @@
| "bp'' (PUnit) = {}"
| "bp'' (PPair p1 p2) = bp'' p1 \<union> bp'' p2"
-thm exp_pat3_fv
-thm exp_pat3_eq_iff
-thm exp_pat3_bn
-thm exp_pat3_perm
-thm exp_pat3_induct
-thm exp_pat3_distinct
+thm exp_pat3.fv
+thm exp_pat3.eq_iff
+thm exp_pat3.bn
+thm exp_pat3.perm
+thm exp_pat3.induct
+thm exp_pat3.distinct
(* example 6 from Peter Sewell's bestiary *)
nominal_datatype exp6 =
@@ -663,12 +663,12 @@
| "bp6 (PUnit') = {}"
| "bp6 (PPair' p1 p2) = bp6 p1 \<union> bp6 p2"
-thm exp6_pat6_fv
-thm exp6_pat6_eq_iff
-thm exp6_pat6_bn
-thm exp6_pat6_perm
-thm exp6_pat6_induct
-thm exp6_pat6_distinct
+thm exp6_pat6.fv
+thm exp6_pat6.eq_iff
+thm exp6_pat6.bn
+thm exp6_pat6.perm
+thm exp6_pat6.induct
+thm exp6_pat6.distinct
(* THE REST ARE NOT SUPPOSED TO WORK YET *)