--- a/Quot/Nominal/Fv.thy Mon Feb 22 18:09:44 2010 +0100
+++ b/Quot/Nominal/Fv.thy Tue Feb 23 09:31:59 2010 +0100
@@ -295,10 +295,32 @@
*}
ML {*
-fun transp_tac induct alpha_inj term_inj distinct cases eqvt =
- ((rtac @{thm impI} THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
- (rtac allI THEN' rtac impI THEN' rotate_tac (~1) THEN'
- eresolve_tac cases) THEN_ALL_NEW
+fun imp_elim_tac case_rules =
+ Subgoal.FOCUS (fn {concl, context, ...} =>
+ case term_of concl of
+ _ $ (_ $ asm $ _) =>
+ let
+ fun filter_fn case_rule = (
+ case Logic.strip_assums_hyp (prop_of case_rule) of
+ ((_ $ asmc) :: _) =>
+ let
+ val thy = ProofContext.theory_of context
+ in
+ Pattern.matches thy (asmc, asm)
+ end
+ | _ => false)
+ val matching_rules = filter filter_fn case_rules
+ in
+ (rtac impI THEN' rotate_tac (~1) THEN' eresolve_tac matching_rules) 1
+ end
+ | _ => no_tac
+ )
+*}
+
+ML {*
+fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
+ ((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
+ (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
(
asm_full_simp_tac (HOL_ss addsimps alpha_inj @ term_inj @ distinct) THEN'
TRY o REPEAT_ALL_NEW (CHANGED o rtac @{thm conjI}) THEN_ALL_NEW
@@ -328,7 +350,7 @@
val (reflg, (symg, transg)) = build_alpha_refl_gl alphas (x, y, z)
fun reflp_tac' _ = reflp_tac term_induct alpha_inj 1;
fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt 1;
- fun transp_tac' _ = transp_tac alpha_induct alpha_inj term_inj distinct cases eqvt 1;
+ fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
val reflt = Goal.prove ctxt' [] [] reflg reflp_tac';
val symt = Goal.prove ctxt' [] [] symg symp_tac';
val transt = Goal.prove ctxt' [] [] transg transp_tac';
@@ -349,4 +371,29 @@
end
*}
+(*
+Tests:
+prove alpha1_reflp_aux: {* fst (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *}
+by (tactic {* reflp_tac @{thm rtrm1_bp.induct} @{thms alpha1_inj} 1 *})
+
+prove alpha1_symp_aux: {* (fst o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *}
+by (tactic {* symp_tac @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms alpha1_eqvt} 1 *})
+
+prove alpha1_transp_aux: {* (snd o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *}
+by (tactic {* transp_tac @{context} @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms rtrm1.inject bp.inject} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} 1 *})
+
+lemma alpha1_equivp:
+ "equivp alpha_rtrm1"
+ "equivp alpha_bp"
+apply (tactic {*
+ (simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
+ THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN'
+ resolve_tac (HOLogic.conj_elims @{thm alpha1_reflp_aux})
+ THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN'
+ resolve_tac (HOLogic.conj_elims @{thm alpha1_symp_aux}) THEN' rtac @{thm transp_aux}
+ THEN' resolve_tac (HOLogic.conj_elims @{thm alpha1_transp_aux})
+)
+1 *})
+done*)
+
end