--- a/Nominal/ExLet.thy Sat Mar 27 16:17:45 2010 +0100
+++ b/Nominal/ExLet.thy Sat Mar 27 16:20:39 2010 +0100
@@ -7,7 +7,7 @@
atom_decl name
ML {* val _ = recursive := false *}
-
+ML {* val _ = alpha_type := AlphaLst *}
nominal_datatype trm =
Vr "name"
| Ap "trm" "trm"
@@ -19,8 +19,8 @@
binder
bn
where
- "bn Lnil = {}"
-| "bn (Lcons x t l) = {atom x} \<union> (bn l)"
+ "bn Lnil = []"
+| "bn (Lcons x t l) = (atom x) # (bn l)"
thm trm_lts.fv
thm trm_lts.eq_iff
@@ -29,7 +29,7 @@
thm trm_lts.induct[no_vars]
thm trm_lts.inducts[no_vars]
thm trm_lts.distinct
-thm trm_lts.fv[simplified trm_lts.supp]
+thm trm_lts.fv[simplified trm_lts.supp(1-2)]
primrec
permute_bn_raw
@@ -80,7 +80,7 @@
done
lemma Lt_subst:
- "supp (Abs (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
+ "supp (Abs_lst (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
apply (simp only: trm_lts.eq_iff)
apply (rule_tac x="q" in exI)
apply (simp add: alphas)
@@ -98,7 +98,7 @@
lemma fin_bn:
- "finite (bn l)"
+ "finite (set (bn l))"
apply(induct l rule: trm_lts.inducts(2))
apply(simp_all add:permute_bn eqvts)
done
@@ -110,7 +110,7 @@
assumes a1: "\<And>name c. P1 c (Vr name)"
and a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
and a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)"
- and a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
+ and a4: "\<And>lts trm c. \<lbrakk>set (bn lts) \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
and a5: "\<And>c. P2 c Lnil"
and a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
shows "P1 c t" and "P2 c l"
@@ -142,14 +142,14 @@
apply(simp add: fresh_def)
apply(simp add: trm_lts.fv[simplified trm_lts.supp])
apply(simp)
- apply(subgoal_tac "\<exists>q. (q \<bullet> bn (p \<bullet> lts)) \<sharp>* c \<and> supp (Abs (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
+ apply(subgoal_tac "\<exists>q. (q \<bullet> set (bn (p \<bullet> lts))) \<sharp>* c \<and> supp (Abs_lst (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(subst Lt_subst)
apply assumption
apply(rule a4)
- apply(simp add:perm_bn)
- apply assumption
+ apply(simp add:perm_bn[symmetric])
+ apply(simp add: eqvts)
apply (simp add: fresh_star_def fresh_def)
apply(rotate_tac 1)
apply(drule_tac x="q + p" in meta_spec)
@@ -157,8 +157,6 @@
apply(rule at_set_avoiding2)
apply(rule fin_bn)
apply(simp add: finite_supp)
- apply(simp add: supp_abs)
- apply(rule finite_Diff)
apply(simp add: finite_supp)
apply(simp add: fresh_star_def fresh_def supp_abs)
apply(simp add: eqvts permute_bn)
@@ -196,12 +194,10 @@
lemma lets_not_ok1:
- "(Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) =
+ "x \<noteq> y \<Longrightarrow>
+ (Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
(Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
- apply (simp add: alphas trm_lts.eq_iff)
- apply (rule_tac x="0::perm" in exI)
- apply (simp add: fresh_star_def eqvts)
- apply blast
+ apply (simp add: alphas trm_lts.eq_iff fresh_star_def eqvts)
done
lemma lets_nok: