--- a/Paper/Paper.thy Mon Oct 04 12:39:57 2010 +0100
+++ b/Paper/Paper.thy Tue Oct 05 07:30:37 2010 +0100
@@ -60,13 +60,8 @@
text {*
So far, Nominal Isabelle provided a mechanism for constructing
- $\alpha$-equated terms, for example lambda-terms
- %
- \begin{center}
- @{text "t ::= x | t t | \<lambda>x. t"}
- \end{center}
- %
- \noindent
+ $\alpha$-equated terms, for example lambda-terms,
+ @{text "t ::= x | t t | \<lambda>x. t"},
where free and bound variables have names. For such $\alpha$-equated terms,
Nominal Isabelle derives automatically a reasoning infrastructure that has
been used successfully in formalisations of an equivalence checking
@@ -83,7 +78,7 @@
%
\begin{equation}\label{tysch}
\begin{array}{l}
- @{text "T ::= x | T \<rightarrow> T"}\hspace{5mm}
+ @{text "T ::= x | T \<rightarrow> T"}\hspace{9mm}
@{text "S ::= \<forall>{x\<^isub>1,\<dots>, x\<^isub>n}. T"}
\end{array}
\end{equation}
@@ -239,13 +234,7 @@
However, we will not be able to cope with all specifications that are
allowed by Ott. One reason is that Ott lets the user specify ``empty''
- types like
- %
- \begin{center}
- @{text "t ::= t t | \<lambda>x. t"}
- \end{center}
- %
- \noindent
+ types like @{text "t ::= t t | \<lambda>x. t"}
where no clause for variables is given. Arguably, such specifications make
some sense in the context of Coq's type theory (which Ott supports), but not
at all in a HOL-based environment where every datatype must have a non-empty
@@ -288,7 +277,7 @@
construction we perform in Isabelle/HOL can be illustrated by the following picture:
%
\begin{center}
- \begin{tikzpicture}
+ \begin{tikzpicture}[scale=0.9]
%\draw[step=2mm] (-4,-1) grid (4,1);
\draw[very thick] (0.7,0.4) circle (4.25mm);